耐盐苯酚降解菌Staphylococcus sp.的分离及降解特性

母显杰, 丁舒心, 许继飞, 赵娜娜, 孙美晨, 赵吉. 耐盐苯酚降解菌Staphylococcus sp.的分离及降解特性[J]. 环境化学, 2020, (7): 1985-1995. doi: 10.7524/j.issn.0254-6108.2019050904
引用本文: 母显杰, 丁舒心, 许继飞, 赵娜娜, 孙美晨, 赵吉. 耐盐苯酚降解菌Staphylococcus sp.的分离及降解特性[J]. 环境化学, 2020, (7): 1985-1995. doi: 10.7524/j.issn.0254-6108.2019050904
MU Xianjie, DING Shuxin, XU Jifei, ZHAO Nana, SUN Meichen, ZHAO Ji. Isolation and biodegradation characteristics of a halophilic phenol-degrading strain Staphylococcus sp.[J]. Environmental Chemistry, 2020, (7): 1985-1995. doi: 10.7524/j.issn.0254-6108.2019050904
Citation: MU Xianjie, DING Shuxin, XU Jifei, ZHAO Nana, SUN Meichen, ZHAO Ji. Isolation and biodegradation characteristics of a halophilic phenol-degrading strain Staphylococcus sp.[J]. Environmental Chemistry, 2020, (7): 1985-1995. doi: 10.7524/j.issn.0254-6108.2019050904

耐盐苯酚降解菌Staphylococcus sp.的分离及降解特性

    通讯作者: 许继飞, E-mail: jifeixu@gmail.com
  • 基金项目:

    内蒙古自然科学基金(2016MS0305)和内蒙古大学国家级大学生创新创业训练计划项目(201710126048)资助.

Isolation and biodegradation characteristics of a halophilic phenol-degrading strain Staphylococcus sp.

    Corresponding author: XU Jifei, jifeixu@gmail.com
  • Fund Project: Supported by the Inner Mongolia Natural Science Foundation Project (2016MS0305) and Inner Mongolia University National College Students Innovation and Entrepreneurship Training Program (201710126048).
  • 摘要: 从巴丹吉林沙漠盐湖表层沉积物中筛选到一株高效耐盐苯酚降解菌CL.测定了菌株CL的生理生化指标、16S rRNA基因序列,通过动力学模型探究了该菌株的生长和苯酚降解特性,同时考察了固定化对其耐受及降解苯酚能力的影响.结果表明,菌株CL属于葡萄球菌属(Staphylococcus sp.),在温度30℃、pH 7.0-8.0、盐度0-10%和苯酚浓度100-200 mg·L-1条件下,该菌株能高效降解苯酚,其降解率均在85%以上.菌株CL对不同浓度苯酚的降解符合Haldane模型,其最大比降解速率和抑制常数分别为0.32 h-1和351.70 mg·L-1,同时该菌株在不同盐度下对苯酚的降解符合Ghose and Tyagi模型.固定化可以明显增加菌株CL对苯酚的降解和耐受能力.菌株CL在高盐环境下能够高效降解苯酚,具有生物处理高盐含酚废水的潜力.
  • 加载中
  • [1] MAO Z, YU C, XIN L. Enhancement of phenol biodegradation by Pseudochrobactrum sp. through ultraviolet-induced mutation[J]. Molecular Sciences, 2015, 16:7320-7333.
    [2] ACOSTA C A, PASQUALI C E, PANIAGUA G, et al. Evaluation of total phenol pollution in water of San Martin Canal from Santiago del Estero, Argentina[J]. Environment Pollution, 2018, 236:265-272.
    [3] PRAVEEN P, LOH K C. Phenolic wastewater treatment through extractive recovery coupled with biodegradation in a two-phase partitioning membrane bioreactor[J]. Chemosphere, 2015, 141:176-182.
    [4] 王涵, 李瑾, 程华丽, 等. 固定化多酚氧化酶对水中苯酚和氯酚的去除[J]. 环境化学, 2015, 34(3):571-577.

    WANG H, LI J, CHENG H L, et al. Removal of phenol and chlorophenols in aqueous solutions by immobilizated polyphenol oxidase[J]. Environmental Chemistry, 2015, 34(3):571-577(in Chinese).

    [5] 吴正勇, 赵高峰, 周怀东, 等. 三峡库区丰水期表层水中酚类的分布特征及潜在风险[J]. 环境科学, 2012, 33(8):2580-2585.

    WU ZY, ZHAO G F, ZHOU H D, et al. Distribution characteristics and potential risks of phenols in the rainy season surface water from Three Gorges Reservoir[J]. Environmental Science, 2012, 33(8):2580-2585(in Chinese).

    [6] 陈晓华, 魏刚, 刘思远, 等. 高效降酚菌株Ochrobactrum sp. CH10生长动力学和苯酚降解特性的研究[J]. 环境科学, 2012, 33(11):3956-3961.

    CHEN X H, WEI G, LIU S Y, et al. Growth kinetics and phenol degradation of highly efficient phenol-degrading Ochrobactrum sp. CH10[J]. Environmental Science, 2012, 33(11):3956-3961(in Chinese).

    [7] ZHI Y L, XIAO J G, HUI L, et al. High-throughput screening for a moderately halophilic phenol degrading strain and its salt tolerance response[J]. Molecular Sciences, 2015, 16:11834-11848.
    [8] BASSAK B, BHUNIA B, DUTTA S, et al. Kinetics of phenol biodegradation at high concentration by a metabolically versatile isolated yeast Candida tropicalis PHB5[J]. Environmental Science and Pollution Research, 2014, 21:1444-1454.
    [9] 曹军伟, 董纯明, 曹宏斌, 等. 焦化废水中酚降解菌及其降解基因的研究[J]. 环境科学, 2011, 32(2):560-566.

    CAO Y W, DONG C M, CAO H B, et al. Isolation of phenol-degrading bacteria from coking wastewater and their degradation gene[J]. Environmental Science, 2011, 32(2):560-566(in Chinese).

    [10] EREQAT S I, ABDELKADER A A, NASEREDDIN A F, et al. Isolation and characterization of phenol degrading bacterium strain Bacillus thuringiensis J20 from olive waste in Palestine[J]. Environmental Science Health Part A, 2018, 53(1):39-45.
    [11] 蒙小俊, 张玉秀, 杜海迪, 等. Diaphorobacter P2菌株酚降解特性及其在焦化废水中的除酚作用[J]. 环境化学, 2014, 33(5):789-793.

    MENG Y X, ZHANG Y X, DU H D, et al. Characterization of phenol-degrading Diaphorobacter strain P2 and removing phenol in coking wastewater[J]. Environmental Chemistry, 2014, 33(5):789-793(in Chinese).

    [12] TAHERI E, KHIADANI M H, AMIN M M, et al. Treatment of saline wastewater by a sequencing batch reactor with emphasis on aerobic granule formation[J]. Bioresource Technology, 2012, 111:21-26.
    [13] 杨丹丹, 黎乾, 黄晶晶, 等. 岱山盐场可培养嗜盐菌的多样性及其产酶活性筛选[J]. 应用生态学报, 2012, 23(11):3103-3108.

    YANG D D, LI Q, HUANG J J, et al. Diversity and enzyme-producing activity of culturable halophilic bacteria in Daishan Saltern of East China[J]. Chinese Journal of Applied Ecology, 2012, 23(11):3103-3108(in Chinese).

    [14] 东秀珠, 蔡妙英. 常见细菌系统鉴定手册[M]. 北京:科学出版社, 2001. DONG X Z, CAI M Y. Handbook for systematic identification of common bacteria[M]. Beijing:Science Press, 2001(in Chinese).
    [15] EDWARDS U, ROGALL T, BLOCKER H, et al. Isolation and direct complete nucleotide determination of entire genes Characterization of a gene coding for 16S ribosomal RNA[J]. Nucleic Acids Research, 1989, 17(19):7843-7853.
    [16] 汪晶, 柯凤乔. 一株降解雌二醇的恶臭假单胞菌的分离鉴定及降解活性[J]. 环境化学, 2015, 34(4):814-816.

    WANG J, KE F Q. Isolation, identification and degradation activity of a Pseudomonas putida strain degrading estradiol[J]. Environmental Chemistry, 2015, 34(4):814-816(in Chinese).

    [17] 于彩虹, 陈飞, 胡琳娜, 等. 一株苯酚降解菌的筛选及降解动力学特性[J]. 环境工程学报, 2014, 8(3):1215-1220.

    YU C H, CHEN F, HU L N, et al. Selection of phenol degradation bacteria and characteristic of degradation kinetics[J]. Chinese Journal of Environmental Engineering, 2014, 8(3):1215-1220(in Chinese).

    [18] WATANABE K, HINO S, ONODERA K, et al. Diversity in kinetics of bacterial phenol-oxygenating activity[J]. Journal of Fermentation and Bioengineering, 1996, 81(6):562-565.
    [19] ANDREW J F. A mathematical model for the continuous culture of microorganisms utilizing inhibitory substrates[J]. Biotechnology Bioengineering, 1968, 10:707-723.
    [20] 邹小玲, 许柯, 丁丽丽, 等. NaCl和KCl对厌氧污泥抑制的动力学研究[J]. 化工环保, 2009, 29(5):394-397.

    ZOU X L, XU K, DING L L, et al. Kinetics of inhibiting action of NaCl and KCl on anaerobic sludge[J]. Environmental Protection Chemical Industry, 2009, 29(5):394-397(in Chinese).

    [21]
    [22] GRACIOSO L H, VIEIRA P B, BALTAZAR M P G. Removal of phenolic compounds from raw industrial wastewater by Achromobacter sp. isolated from a hydrocarbon-contaminated area[J]. Water And Environment Journal, 2019:33(1):40-41.
    [23] KOBAYASHI F, DAIDAI M, SUZUKI N, et al. Degradation of phenol in seawater using a novel microorganism isolated from the intestine of Aplysiakurodai[J]. International Biodeterioration Biodegradation, 2007, 59:252-254.
    [24] 李晶, 饶婷, 李巍, 等. 恶臭假单胞菌(Pseudomonas putida LY1)共代谢降解苯酚和4-氯苯酚系统的降解动力学研究[J]. 环境科学学报, 2011, 31(10):2109-2116.

    LI J, RAO T, LI W, et al. Kinetic study on cometabolic biodegradation of phenol and 4-chlorophenol by Pseudomonas putida LY1[J]. Acta Scientiae Circumstantiae, 31(10):2109-2116(in Chinese).

    [25] KUMARAN P, PARUCHURI Y L. Kinetics of phenol biotransformation[J]. Water Research, 1997, 31:11-22.
    [26] KUMAR A, KUMAR S, KUMAR S. Biodegradation kinetics of phenol and catechol using Pseudomonas putida MTCC 119[J]. Biochemical Engineering Journal, 2005, 22:151-159.
    [27] SINGH R K, KUMAR S, KUMAR S, et al. Biodegradation kinetic studies for the removal of p-cresol from wastewater using Gliomastix indicus MTCC 3869[J]. Biochemical Engineering Journal, 2008, 40:293-303.
    [28] 葛启隆, 岳秀萍, 王国英, 等. 好氧反硝化苯酚降解菌的分离鉴定及动力学[J]. 环境工程学报, 2014, 8(6):2605-2610.

    GE Q L, YUE X P, WANG G Y, et al. Isolation and identification of aerobic denitrifying phenol-degrading strain and its kinetic[J]. Chinese Journal of Environmental Engineering, 2014, 8(6):2605-2610(in Chinese).

    [29] 李静, 李文英. 喹啉降解菌筛选及其对焦化废水强化处理[J]. 环境科学, 2015, 36(4):1385-1391.

    LI J, LI W Y. Screening of a highly efficient quinoline-degrading strain and its enhanced biotreatment on coking waste water[J]. Environmental Science, 2015, 36(4):1385-1391(in Chinese).

    [30] GAYATHRI K V, VASUDEVAN N. Enrichment of phenol degrading moderately halophilic bacterial consortium from saline environment[J]. Journal Bioremediation & Biodegradation, 2010, 1:104-109.
    [31] 王丽娟, 钱子雯, 沈海波, 等. 一株耐盐菌的分离及其降解特性[J]. 化工进展, 2017, 36(3):1047-1051.

    WANG L J, QIAN Z W, SHEN H B, et al. Separation and biodegradation characteristics of a halotolerant strain[J]. Chemical Industry and Engineering Progress, 2017, 36(3):1047-1051(in Chinese).

    [32] KARGI F, DINCER A R. Saline wastewater treatment by halophile-supplemented activated sludge culture in an aerated rotating biodisccontactor[J]. Enzyme and Microbial Technology, 1998, 22:427-433.
    [33] PEYTON B M, WILSON T, YONGE D R. Kinetics of phenol biodegradation in high salt solutions[J]. Water Reserch, 2002, 36:4811-4820.
    [34] QIAO L, WEN D H, WANG J L. Biodegradation of pyridine by Paracoccus sp. KT-5 immobilized on bamboo-based activated carbon[J]. Bioresource Technology, 2010, 101:5229-5234.
    [35] 刘和, 王晓云, 陈英旭. 固定化微生物技术处理含酚废水[J]. 中国给水排水, 2003, 19(5):53-55.

    LIU H, WANG X Y, CHEN Y X. Immobilized microorganism technology for treatment of phenolic wastewater[J]. China Water and Wasterwater, 2003, 19(5):53-55(in Chinese).

  • 加载中
计量
  • 文章访问数:  1949
  • HTML全文浏览数:  1949
  • PDF下载数:  47
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-05-09

耐盐苯酚降解菌Staphylococcus sp.的分离及降解特性

    通讯作者: 许继飞, E-mail: jifeixu@gmail.com
  • 内蒙古大学生态与环境学院, 内蒙古环境污染控制与废物资源化重点实验室, 呼和浩特, 010021
基金项目:

内蒙古自然科学基金(2016MS0305)和内蒙古大学国家级大学生创新创业训练计划项目(201710126048)资助.

摘要: 从巴丹吉林沙漠盐湖表层沉积物中筛选到一株高效耐盐苯酚降解菌CL.测定了菌株CL的生理生化指标、16S rRNA基因序列,通过动力学模型探究了该菌株的生长和苯酚降解特性,同时考察了固定化对其耐受及降解苯酚能力的影响.结果表明,菌株CL属于葡萄球菌属(Staphylococcus sp.),在温度30℃、pH 7.0-8.0、盐度0-10%和苯酚浓度100-200 mg·L-1条件下,该菌株能高效降解苯酚,其降解率均在85%以上.菌株CL对不同浓度苯酚的降解符合Haldane模型,其最大比降解速率和抑制常数分别为0.32 h-1和351.70 mg·L-1,同时该菌株在不同盐度下对苯酚的降解符合Ghose and Tyagi模型.固定化可以明显增加菌株CL对苯酚的降解和耐受能力.菌株CL在高盐环境下能够高效降解苯酚,具有生物处理高盐含酚废水的潜力.

English Abstract

参考文献 (35)

目录

/

返回文章
返回