CWPO体系中污泥炭催化降解头孢氨苄废水

余丽, 刘允康, 王国英, 刘伟军, 马磊. CWPO体系中污泥炭催化降解头孢氨苄废水[J]. 环境化学, 2020, (5): 1262-1270. doi: 10.7524/j.issn.0254-6108.2019050602
引用本文: 余丽, 刘允康, 王国英, 刘伟军, 马磊. CWPO体系中污泥炭催化降解头孢氨苄废水[J]. 环境化学, 2020, (5): 1262-1270. doi: 10.7524/j.issn.0254-6108.2019050602
YU Li, LIU Yunkang, WANG Guoying, LIU Weijun, MA Lei. Catalytic wet peroxide oxidation of wastewater containing cephalexin with sludge derived carbon catalyst[J]. Environmental Chemistry, 2020, (5): 1262-1270. doi: 10.7524/j.issn.0254-6108.2019050602
Citation: YU Li, LIU Yunkang, WANG Guoying, LIU Weijun, MA Lei. Catalytic wet peroxide oxidation of wastewater containing cephalexin with sludge derived carbon catalyst[J]. Environmental Chemistry, 2020, (5): 1262-1270. doi: 10.7524/j.issn.0254-6108.2019050602

CWPO体系中污泥炭催化降解头孢氨苄废水

    通讯作者: 马磊, E-mail: malei@bipt.edu.cn
  • 基金项目:

    山西省重点研发计划(201803D31003)和山西省自然科学基金(201901D211029)资助.

Catalytic wet peroxide oxidation of wastewater containing cephalexin with sludge derived carbon catalyst

    Corresponding author: MA Lei, malei@bipt.edu.cn
  • Fund Project: Supported by Shanxi Key Program of Research and Development(201803D31003) and Natural Science Foundation of Shanxi Province (201901D211029).
  • 摘要: 通过加入正丁醇以共沸蒸馏法对剩余污泥进行脱水,再对污泥进行干燥、焙烧和改性得到污泥炭催化剂.将污泥炭催化剂用于催化湿式过氧化氢氧化体系,处理头孢氨苄废水.采用响应面法中的中心组合设计实验,考察反应温度、初始pH和过氧化氢投加量对TOC降解率的影响,反应温度和过氧化氢投加量具有显著交互作用.在最佳实验条件下(T=50℃、pH=3.00、H2O2=0.071 mol·L-1),TOC去除率为59%,接近预测的TOC去除率(60%),在95%的置信区间内,说明该模型可靠.SEM、TEM、TPD-MS、XPS和FT-IR等分析结果表明污泥炭表面存在纳米尺寸片状结构,这种结构中存在酚羟基、羰基、羧基等活性官能团和醌类结构,且ICP-OES、EDAX和57Fe穆斯堡尔谱等分析结果表明,污泥炭中含有不同价态的Fe,能有效地催化过氧化氢分解,将头孢氨苄转化为苯甲酸、丁二酮等小分子物质,再进一步完全氧化.
  • 加载中
  • [1] 胡秀虹, 汤承浩, 吴林冬, 等. Zr掺杂TiO2介孔材料光催化降解头孢氨苄[J]. 化工环保, 2017, 37(4):460-465.

    HU X H, TANG C H, WU L D, et al. Photocatalytic degradation of cefalexin by Zr-doped TiO2 mesoporous material[J].Environmental Protection of Chemical Industry, 2017, 37(4):460-465(in Chinese).

    [2] GASHTASBI F, YENGEJEH R J, BABAEI A A. Photocatalysis assisted by activated-carbon-impregnated magnetite composite for removal of cephalexin from aqueous solution[J]. Korean Journal of Chemical Engineering, 2018, 35(8):1726-1734.
    [3] WANG Y, WEI H, LIU P, et al. Effect of structural defects on activated carbon catalysts in catalytic wet peroxide oxidation of m-cresol[J]. Catalysis Today, 2015, 258:120-131.
    [4] GU L, ZHU N, GUO H, et al. Adsorption and Fenton-like degradation of naphthalene dye intermediate on sewage sludge derived porous carbon[J]. Journal of Hazardous Materials, 2013, 246-247:145-153.
    [5] 赵颖,王亚旻,卫皇曌,等. 响应面法优化污泥炭催化湿式过氧化氢氧化降解间甲酚模拟废水[J]. 环境化学, 2016, 35(3):516-525.

    ZHAO Y, WANG Y M, WEI H Z, et al. Optimization of m-cresol degradation by sludge-derived carbon in catalytic wet peroxide oxiddation using response surface methodology[J]. Environmental Chemistry, 2016, 35(3):516-525(in Chinese).

    [6] TU Y, XIONG Y, TIAN S, et al. Catalytic wet air oxidation of 2-chlorophenol over sewage sludge-derived carbon-based catalysts[J]. Journal of Hazardous Materials, 2014, 276:88-96.
    [7] WEN G, PAN Z H, MA J, et al. Reuse of sewage sludge as a catalyst in ozonation——efficiency for the removal of oxalic acid and the control of bromate formation[J]. Journal of Hazardous Materials, 2012, 239-240:381-388.
    [8] MA L, JIN C, AN L, et al. Preliminary investigation of the degradation mechanism of o, m and p-cresol using sludge-derived carbon nanosheets by catalytic oxidation based on quantum chemistry[J]. Catalysis Communications, 2019, 120:59-65.
    [9] 陶辉,李文君,陈卫,等. 臭氧氧化降解水中头孢氨苄的效能与机理研究[J]. 给水排水, 2014, 40(11):115-119.

    TAO H, LI W J, CHEN W, et al. Degradation efficiency and mechanism of ozone on cephalexin in water[J]. Water & Wastewater Engineering, 2014, 40(11):115-119(in Chinese).

    [10] YU Y, WEI H, YU L, et al. Catalytic wet air oxidation of m-cresol over a surface-modified sewage sludge-derived carbonaceous catalyst[J]. Catalysis Science & Technology, 2016, 6:1085-1093.
    [11] YU Y, WEI H, YU L, et al. Surface modification of sewage sludge derived carbonaceous catalyst for m-cresol catalytic wet peroxide oxidation and degradation mechanism[J]. RSC Advances, 2015, 5(52):41867-41876.
    [12] KO Y, KIM D, KWON C H, et al. Hydrophobic and hydrophilic nanosheet catalysts with high catalytic activity and recycling stability through control of the outermost ligand[J]. Applied Surface Science, 2018, 436:791-802.
    [13] SANTORO C, KODALI M, KABIR S, et al. Three-dimensional graphene nanosheets as cathode catalysts in standard and supercapacitive microbial fuel cell[J]. Journal of Power Sources, 2017, 356:371-380.
    [14] ZHANG N, LI B, LI S, et al. Graphene-supported mesoporous titania nanosheets for efficient photodegradation[J]. Journal of Colloid and Interface Science, 2017, 505:711-718.
    [15] QUINTANILLA A, CASAS J A, RODRíGUEZ J J. Catalytic wet air oxidation of phenol with modified activated carbons and Fe/activated carbon catalysts[J]. Applied Catalysis B:Environmental, 2007, 76(1):135-145.
    [16] ZHOU J H, SUI Z J, ZHU J, et al. Characterization of surface oxygen complexes on carbon nanofibers by TPD, XPS and FT-IR[J]. Carbon, 2007, 45(4):785-796.
    [17] FIGUEIREDO J L, PEREIRA M F R, FREITAS M M A, et al. Characterization of active sites on carbon catalysts[J]. Industrial & Engineering Chemistry Research, 2007, 46(12):4110-4115.
    [18] ZHOU J H, SUI Z J, ZHU J, et al. Characterization of surface oxygen complexes on carbon nanofibers by TPD, XPS and FT-IR[J]. Carbon, 2007, 45(4):785-796.
    [19] MORENO-CASTILLA C, LOPEZ-RAMON M V, CARRASCO-MARIN F. Changes in surface chemistry of activated carbons by wet oxidation[J]. Carbon, 2000, 38(14):1995-2001.
    [20] YUE Z R, JIANG W, WANG L, et al. Surface characterization of electrochemically oxidized carbon fibers[J]. Carbon, 1999, 37(11):1785-1796.
    [21] TERZYK A P. The influence of activated carbon surface chemical composition on the adsorption of acetaminophen (paracetamol) in vitro:Part Ⅱ. TG, FTIR, and XPS analysis of carbons and the temperature dependence of adsorption kinetics at the neutral pH[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2001, 177(1):23-45.
    [22] 李先如, 王维, 陈静怡, 等. 催化湿式氧化处理头孢氨苄废水[J]. 工业催化,2018, 26(1):74-80.

    LI XR, CHEN W, CHEN J Y, et al. Catalytic wet air oxidation of waste water containing cephalexin[J]. Industrial Catalysis, 2018, 26(1):74-80(in Chinese).

    [23] BANSAL P, VERMA A. Pilot-scale single-step reactor combining photocatalysis and photo-Fenton aiming at faster removal of Cephalexin[J]. Journal of Cleaner Production, 2018, 195:540-551.
    [24] PEREA L A, PALMA-GOYES R E, VAZQUEZ-ARENAS J, et al. Efficient cephalexin degradation using active chlorine produced on ruthenium and iridium oxide anodes:Role of bath composition, analysis of degradation pathways and degradation extent[J]. Science of the Total Environment, 2018, 648:377-387.
  • 加载中
计量
  • 文章访问数:  1864
  • HTML全文浏览数:  1864
  • PDF下载数:  28
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-05-06

CWPO体系中污泥炭催化降解头孢氨苄废水

    通讯作者: 马磊, E-mail: malei@bipt.edu.cn
  • 1. 太原理工大学环境科学与工程学院, 太原, 030024;
  • 2. 中国辐射防护研究院, 太原, 030024;
  • 3. 山西晋环科源环境资源科技有限公司, 太原, 030024;
  • 4. 北京石油化工学院, 燃料清洁化及高效催化减排技术北京市重点实验室, 北京, 102617
基金项目:

山西省重点研发计划(201803D31003)和山西省自然科学基金(201901D211029)资助.

摘要: 通过加入正丁醇以共沸蒸馏法对剩余污泥进行脱水,再对污泥进行干燥、焙烧和改性得到污泥炭催化剂.将污泥炭催化剂用于催化湿式过氧化氢氧化体系,处理头孢氨苄废水.采用响应面法中的中心组合设计实验,考察反应温度、初始pH和过氧化氢投加量对TOC降解率的影响,反应温度和过氧化氢投加量具有显著交互作用.在最佳实验条件下(T=50℃、pH=3.00、H2O2=0.071 mol·L-1),TOC去除率为59%,接近预测的TOC去除率(60%),在95%的置信区间内,说明该模型可靠.SEM、TEM、TPD-MS、XPS和FT-IR等分析结果表明污泥炭表面存在纳米尺寸片状结构,这种结构中存在酚羟基、羰基、羧基等活性官能团和醌类结构,且ICP-OES、EDAX和57Fe穆斯堡尔谱等分析结果表明,污泥炭中含有不同价态的Fe,能有效地催化过氧化氢分解,将头孢氨苄转化为苯甲酸、丁二酮等小分子物质,再进一步完全氧化.

English Abstract

参考文献 (24)

目录

/

返回文章
返回