抗生素对细菌的Hormesis效应与细菌产吲哚浓度相关性的初步探究

潘永正, 孙昊宇, 王雅娟, 张跃恒, 印春生, 林志芬. 抗生素对细菌的Hormesis效应与细菌产吲哚浓度相关性的初步探究[J]. 环境化学, 2020, (4): 950-959. doi: 10.7524/j.issn.0254-6108.2019032802
引用本文: 潘永正, 孙昊宇, 王雅娟, 张跃恒, 印春生, 林志芬. 抗生素对细菌的Hormesis效应与细菌产吲哚浓度相关性的初步探究[J]. 环境化学, 2020, (4): 950-959. doi: 10.7524/j.issn.0254-6108.2019032802
PAN Yongzheng, SUN Haoyu, WANG Yajuan, ZHANG Yueheng, YIN Chunsheng, LIN Zhifen. Preliminary study on the relationship between Hormetic effect and indole production of bacteria on the effect of antibiotic[J]. Environmental Chemistry, 2020, (4): 950-959. doi: 10.7524/j.issn.0254-6108.2019032802
Citation: PAN Yongzheng, SUN Haoyu, WANG Yajuan, ZHANG Yueheng, YIN Chunsheng, LIN Zhifen. Preliminary study on the relationship between Hormetic effect and indole production of bacteria on the effect of antibiotic[J]. Environmental Chemistry, 2020, (4): 950-959. doi: 10.7524/j.issn.0254-6108.2019032802

抗生素对细菌的Hormesis效应与细菌产吲哚浓度相关性的初步探究

    通讯作者: 印春生, E-mail: csyin@shou.edu.cn 林志芬, E-mail: lzhifen@tongji.edu.cn
  • 基金项目:

    同济大学污染控制与资源化研究国家重点实验室自主研究(重点)项目(PCRRK16007),国家自然科学基金(21377096,21577105),上海市科学技术委员会(14DZ2261100),国家水污染防治科技重大项目(2018ZX07109-1)和环境化学与生态毒理学国家重点实验室(KF2016-11)资助.

Preliminary study on the relationship between Hormetic effect and indole production of bacteria on the effect of antibiotic

    Corresponding authors: YIN Chunsheng, csyin@shou.edu.cn ;  LIN Zhifen, lzhifen@tongji.edu.cn
  • Fund Project: Supported by the Foundation of the State Key Laboratory of Pollution Control and Resource Reuse (PCRRK16007), the National Natural Science Foundation of China (21377096, 21577105), the Science & Technology Commission of Shanghai Municipality (14DZ2261100), the National Water Pollution Control and Treatment Science and Technology Major Project of China (2018ZX07109-1) and the State Key Laboratory of Environmental Chemistry and Ecotoxicology (KF2016-11).
  • 摘要: Hormesis效应因其表现出的低浓度促进和高浓度抑制的特殊现象逐渐成为毒理学研究的热点.近年来,人们对抗生素的Hormesis效应进行了大量的研究.吲哚作为一种广泛存在的信号分子,对细菌的多种生理活动都起着重要的调控作用,吲哚是否可能参与调控抗生素对细菌的Hormesis效应是值得我们关注的问题.本文以磺胺甲氧哒嗪(Sulfamethoxypyridazine,SMP)为研究对象,以大肠杆菌为模式生物,建立了大肠杆菌产吲哚浓度的测定方法,并利用该方法测定了SMP对大肠杆菌的Hormesis效应下,大肠杆菌产吲哚的浓度随SMP浓度增加的变化情况.结果显示,当SMP对大肠杆菌的生长起促进作用时,细菌单位OD600产吲哚的浓度随SMP浓度的增加呈现了下降的趋势;当SMP对大肠杆菌的生长表现为抑制作用时,细菌单位OD600产吲哚的浓度随SMP浓度的增加呈现了逐渐上升的趋势.通过初步探究我们推测,SMP可能通过诱导大肠杆菌产生吲哚,并以吲哚作为信号分子调控大肠杆菌的分裂,从而对大肠杆菌的生长表现出Hormesis效应.本研究为尚未有定论的Hormesis机制提供了一定的理论指导.
  • 加载中
  • [1] CALABRESE E J, BALDWIN L A. Defining hormesis[J]. Human & Experimental Toxicology, 2002, 21(2):91-97.
    [2] SOUTHAM C M. Effects of extract of western red-cedar heartwood on certain wood-decaying fungi in culture[J]. Phytopathology, 1943, 33:517-524.
    [3] CALABRESE E J, BALDWIN L A. Toxicology rethinks its central belief[J]. Nature, 2003, 421(6924):691-692.
    [4] KAISER J. A healthful dab of radiation?[J]. American Association for the Advancement of Science, 2003, 302(5644):378.
    [5] GARDNER A D. Morphological effects of penicillin on bacteria[J]. Nature, 1940, 146(3713):837-838.
    [6] MIGLIORE L, ROTINI A, THALLER M C. Low doses of tetracycline trigger the E. coli growth:A case of hormetic response[J]. Dose-response, 2013, 11(4):550-557.
    [7] MATHIEU A, FLEURIER S, FRENOY A, et al. Discovery and function of a general core hormetic stress response in e.coli induced by sublethal concentrations of antibiotics[J]. Cell Reports, 2016, 17(1):46-57.
    [8] CALABRESE E J, HOFFMANN G R, STANEK E J, et al. Hormesis in high-throughput screening of antibacterial compounds in e coli[J]. Human & Experimental Toxicology, 2010, 29(8):667-677.
    [9] DENG Z, LIN Z, ZOU X, et al. Model of hormesis and its toxicity mechanism based on quorum sensing:A case study on the toxicity of sulfonamides to photobacterium phosphoreum[J]. Environmental Science & Technology, 2012, 46(14):7746-7754.
    [10] WANG T, WANG D, LIN Z, et al. Prediction of mixture toxicity from the hormesis of a single chemical:A case study of combinations of antibiotics and quorum-sensing inhibitors with gram-negative bacteria[J]. Chemosphere, 2016, 150:159-167.
    [11] 方淑霞, 王大力, 朱丽华, 等.抗生素对微生物的联合与低剂量毒性研究进展[J]. 生态毒理学报, 2015, 10(2):69-75.

    FANG S X, WANG D L, ZHU L H, et al. Progress in researches on toxicity of antibiotics in low dose and mixture exposure to microorganisms[J]. Asian Journal of Ecotoxicology, 2015, 10(2):69-75(in Chinese).

    [12] SUN H, GE H, ZHENG M, et al. Mechanism underlying time-dependent cross-phenomenon between concentration-response curves and concentration addition curves:A case study of sulfonamides-erythromycin mixtures on escherichia coli[J]. Scientific Reports, 2016, 6(1):33718.
    [13] ZOU X, LIN Z, DENG Z, et al. Novel approach to predicting hormetic effects of antibiotic mixtures on vibrio fischeri[J]. Chemosphere, 2013, 90(7):2070-2076.
    [14] WANG D, CALABRESE E J, LIAN B, et al. Hormesis as a mechanistic approach to understanding herbal treatments in traditional chinese medicine[J]. Pharmacology & Therapeutics, 2017,184(8):42-50
    [15] HAN Y, YANG C L, YANG Q, et al. Mutation of tryptophanase gene tnaA in edwardsiella tarda reduces lipopolysaccharide production, antibiotic resistance and virulence[J]. Environmental Microbiology Reports, 2011, 3(5):603-612.
    [16] LEE J, JAYARAMAN A, WOOD T K. Indole is an inter-species biofilm signal mediated by sdiA[J]. Bmc Microbiology, 2007, 7(1):1-15.
    [17] HIDETADA H, YOSHIKIKO I, TAKESHI M, et al. Indole induces the expression of multidrug exporter genes in escherichia coli[J]. Molecular Microbiology, 2010, 55(4):1113-1126.
    [18] HIRAKAWA H, KODAMA T, TAKUMI-KOBAYASHI A, et al. Secreted indole serves as a signal for expression of type Ⅲ secretion system translocators in enterohaemorrhagic escherichia coli o157:h7[J]. Microbiology, 2009, 155(2):541-550.
    [19] CHANT E L, SUMMERS D K. Indole signalling contributes to the stable maintenance of escherichia coli multicopy plasmids[J]. Molecular Microbiology, 2010, 63(1):35-43.
    [20] HAN T H, LEE J H, CHO M H, et al. Environmental factors affecting indole production in escherichia coli[J]. Research in Microbiology, 2011, 162(2):108-116.
    [21] SUN H, ZHENG M, SONG J, et al. Multiple-species hormetic phenomena induced by indole:A case study on the toxicity of indole to bacteria, algae and human cells[J]. Science of the Total Environment, 2019, 657:46-55.
    [22] DI MARTINO P, FURSY R, BRET L, et al. Indole can act as an extracellular signal to regulate biofilm formation of escherichia coli and other indole-producing bacteria[J]. Canadian Journal of Microbiology, 2003, 49(7):443-449.
    [23] JOANNA D, JINTAE L, WOOD T K. Ylih (bssR) and yceP (bssS) regulate escherichia coli k-12 biofilm formation by influencing cell signaling[J]. Applied & Environmental Microbiology, 2006, 72(4):2449-2254.
    [24] JISUN K, WOOJUN P. Indole inhibits bacterial quorum sensing signal transmission by interfering with quorum sensing regulator folding[J]. Microbiology, 2013, 159(Pt 12):2616-2625.
    [25] CHU W, ZERE T R, WEBER M M, et al. Indole production promotes escherichia coli mixed-culture growth with pseudomonas aeruginosa by inhibiting quorum signaling[J]. Applied & Environmental Microbiology, 2012, 78(2):411-419.
    [26] JIN-HYUNG L, JINTAE L. Indole as an intercellular signal in microbial communities[J]. Fems Microbiology Reviews, 2010, 34(4):426-444.
    [27] DYSZEL J L, SOARES J A, SWERINGEN M C, et al. E. coli k-12 and eHEC genes regulated by sdiA[J]. Plos One, 2010, 5(1):e8946.
    [28] SABAGDAIGLE A. The acyl homoserine lactone (aHL) receptor, sdiA, of E. coli and salmonella does not respond to indole, but at high concentrations indole can interfere with aHL detection[J]. Applied and Environmental Microbiology, 2012,78(15):5424-5431.
    [29] GARCIA-LARA J, SHANG L H, ROTHFIELD L I. An extracellular factor regulates expression of sdiA, a transcriptional activator of cell division genes in escherichia coli[J]. Journal of Bacteriology, 1996, 178(10):2742-2748.
    [30] JONSSON M. Microbial responses to antibiotics:stability of resistance and extended potential of targeting the folate synthesis[D]. Ann Arbor:Ann Arbor Universitatis Upsaliensis, 2005.
    [31] SWARBICK J, DENNIS M, LEE M, et al. 8-Mercaptoguanine derivatives as inhibitors of dihydropteroate synthase[J]. Chemistry-A European Journal, 2018, 24(8):1922-1930.
    [32] JAYARAMAN P, SAKHARKAR M K, LIM C S, et al. Activity and interactions of antibiotic and phytochemical combinations against pseudomonas aeruginosa in vitro[J]. International Journal of Biological Sciences, 2010, 6(6):556-568.
  • 加载中
计量
  • 文章访问数:  2080
  • HTML全文浏览数:  2080
  • PDF下载数:  38
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-03-28

抗生素对细菌的Hormesis效应与细菌产吲哚浓度相关性的初步探究

    通讯作者: 印春生, E-mail: csyin@shou.edu.cn ;  林志芬, E-mail: lzhifen@tongji.edu.cn
  • 1. 上海海洋大学海洋生态与环境学院, 上海, 201306;
  • 2. 污染控制与资源化研究国家重点实验室, 同济大学环境科学与工程学院, 上海, 200092
基金项目:

同济大学污染控制与资源化研究国家重点实验室自主研究(重点)项目(PCRRK16007),国家自然科学基金(21377096,21577105),上海市科学技术委员会(14DZ2261100),国家水污染防治科技重大项目(2018ZX07109-1)和环境化学与生态毒理学国家重点实验室(KF2016-11)资助.

摘要: Hormesis效应因其表现出的低浓度促进和高浓度抑制的特殊现象逐渐成为毒理学研究的热点.近年来,人们对抗生素的Hormesis效应进行了大量的研究.吲哚作为一种广泛存在的信号分子,对细菌的多种生理活动都起着重要的调控作用,吲哚是否可能参与调控抗生素对细菌的Hormesis效应是值得我们关注的问题.本文以磺胺甲氧哒嗪(Sulfamethoxypyridazine,SMP)为研究对象,以大肠杆菌为模式生物,建立了大肠杆菌产吲哚浓度的测定方法,并利用该方法测定了SMP对大肠杆菌的Hormesis效应下,大肠杆菌产吲哚的浓度随SMP浓度增加的变化情况.结果显示,当SMP对大肠杆菌的生长起促进作用时,细菌单位OD600产吲哚的浓度随SMP浓度的增加呈现了下降的趋势;当SMP对大肠杆菌的生长表现为抑制作用时,细菌单位OD600产吲哚的浓度随SMP浓度的增加呈现了逐渐上升的趋势.通过初步探究我们推测,SMP可能通过诱导大肠杆菌产生吲哚,并以吲哚作为信号分子调控大肠杆菌的分裂,从而对大肠杆菌的生长表现出Hormesis效应.本研究为尚未有定论的Hormesis机制提供了一定的理论指导.

English Abstract

参考文献 (32)

目录

/

返回文章
返回