柠檬酸对生物炭钝化污染土壤中重金属稳定性的影响

刘高洁, 周丹丹, 李丽娜, 陈异晖, 古正刚, 董慧. 柠檬酸对生物炭钝化污染土壤中重金属稳定性的影响[J]. 环境化学, 2020, (2): 343-351. doi: 10.7524/j.issn.0254-6108.2019021906
引用本文: 刘高洁, 周丹丹, 李丽娜, 陈异晖, 古正刚, 董慧. 柠檬酸对生物炭钝化污染土壤中重金属稳定性的影响[J]. 环境化学, 2020, (2): 343-351. doi: 10.7524/j.issn.0254-6108.2019021906
LIU Gaojie, ZHOU Dandan, LI Lina, CHEN Yihui, GU Zhenggang, DONG Hui. Effects of citric acid on the stability of immobilizaed heavy metals by biochar in contaminated soil[J]. Environmental Chemistry, 2020, (2): 343-351. doi: 10.7524/j.issn.0254-6108.2019021906
Citation: LIU Gaojie, ZHOU Dandan, LI Lina, CHEN Yihui, GU Zhenggang, DONG Hui. Effects of citric acid on the stability of immobilizaed heavy metals by biochar in contaminated soil[J]. Environmental Chemistry, 2020, (2): 343-351. doi: 10.7524/j.issn.0254-6108.2019021906

柠檬酸对生物炭钝化污染土壤中重金属稳定性的影响

    通讯作者: 董慧, E-mail: cyh@yies.org.cn
  • 基金项目:

    云南省重点研发计划(2018BC004)和昆明理工大学自然科学研究基金省级人培(KKSY201506058)资助.

Effects of citric acid on the stability of immobilizaed heavy metals by biochar in contaminated soil

    Corresponding author: DONG Hui, cyh@yies.org.cn
  • Fund Project: Supported by The Yunnan Provincial Key Research and Development Program, China(2018BC004) and Fund Project for Introducing Talents for Scientific Research, Kunming University of Science and Technology(KKSY201506058).
  • 摘要: 为了研究生物炭(BC)对重金属复合污染土壤的钝化效果以及环境条件变化后钝化产物的稳定性.在受Cd、Pb和Zn污染的土壤中添加不同比例的生物炭进行土培实验,两个月后,添加不同浓度的柠檬酸模拟植物根际环境条件,分析土壤环境条件变化后重金属钝化产物的稳定性.结果表明,与对照组相比,添加生物炭(5%和8%)显著提高了土壤的pH值、阳离子交换容量(CEC)、土壤有机质(SOM),而有效态重金属和重金属毒性浸出浓度均显著降低,且后者低于其国际标准.添加柠檬酸后,土壤pH值随柠檬酸浓度的增加呈现下降趋势;生物炭的添加比例一定时,有效态Cd (DTPA-Cd)和Cd的毒性浸出浓度(TCLP-Cd)随柠檬酸浓度的增加呈现先降低(2 mmol·kg-1)后升高(10、20 mmol·kg-1)的趋势,而有效铅(DTPA-Pb)和有效态锌(DTPA-Zn)随柠檬酸浓度的增加而上升.柠檬酸浓度一定时,有效态重金属和重金属毒性浸出浓度随生物炭的添加比例的增加而降低,当生物炭的添加比例大于5%时,TCLP-Cd和TCLP-Zn虽有所上升(与无柠檬酸相比),但均低于其国际标准.可见,生物炭可对重金属污染土壤进行有效修复,但随着环境条件的变化,被钝化的重金属会发生解吸和溶解释放,从而增强其生物有效性和环境风险,但当生物炭的添加比例较高时,会一定程度抑制重金属的解吸和溶解释放,Cd和Zn的环境风险仍处于可接受的安全水平.
  • 加载中
  • [1] CHANEYR L, REEVESPG, RYANJ A,et al.An improved understanding of soil Cd risk to humans and low cost methods to phytoextract Cd from contaminated soils to prevent soil Cd risks[J]. Biometals, 2004,17(5):549-553.
    [2] GARAUG, CASTALDIP, SANTONAL, et al.Influence of red mud, zeolite and lime on heavy metal immobilization, culturable heterotrophic microbial populations and enzyme activities in a contaminated soil[J]. Geoderma, 2007, 142(1-2):47-57.
    [3] BOLANN, KUNHIKRISHNANA, THANGARAJANR, et al. Remediation of heavy metal(loid)s contaminated soils-to mobilize or to immobilize[J].Journal of Hazardous Materials,2014, 266: 141-166.
    [4] RAHMAN I M M, BEGUM Z A, SAWAI H.Solidification/stabilization: A remedial option for metal-contaminated soils [M]. Springer Japan,2016.
    [5] ZHAO B W, XU R Z, MAF F, et al. Effects of biochars derived from chicken manure and rape straw on speciation and phytoavailability of Cd to maize in artificially contaminated loess soil[J]Journal of Environmental Management,2016 184(3): 569-574.
    [6] BIANR, JOSEPH S, CUI L Q, et al.A three-year experiment confirms continuous immobilization of cadmium and lead in contaminated paddy field with biochar amendment[J]Journal of Hazard Materials, 2014, 272:121-128.
    [7] MUKHERJEES, WEIHERMULLERL, TAPPE W, et al.Sorption-desorption behaviour of bentazone, boscalid and pyrimethanil in biochar and digestate based soil mixtures for biopurification systems.[J]Science of the Total Environment, 2016,559:63-73.
    [8] CHAOX, QIANX, ZHU HH, et al.Effect of biochar from peanut shell on speciation and availability of lead and zinc in an acidic paddy soil[J].Ecotoxicology and Environmental Safety, 2018,164:554-561.
    [9] NIU LQ, JIA P, LI S P, et al.Slash-and-char: An ancient agricultural technique holds new promise for management of soils contaminated by Cd, Pb and Zn[J]Environmental Pollution, 2015,205:333-339.
    [10] 张连科,刘心宇,王维大,等.两种油料作物秸秆生物炭对土壤中铅的钝化修复[J].生态环境学报,2018,27(1):166-173.

    ZHANG L K, LIU X Y, WANG W D, et al. Immobilization of Lead in contaminated soil by biochar produced from two kinds of oil crops straw[J].Ecology and Environmental Sciences,2018,27(1):166-173(in Chinese).

    [11] HOUBEN D, EVRARDL, SONNETP. Mobility, bioavailability and pH-dependent leaching of cadmium, zinc and lead in a contaminated soil amended with biochar[J]. Chemosphere, 2013, 92(11):1450-1457.
    [12] SHENZT, HOUDY, JINF, et al.Effect of production temperature on lead removal mechanisms by rice straw biochars[J]. Science of the Total Environment, 2019, 655:751-758.
    [13] ALOZIE N, HEANEYN,LIN C X. Biochar immobilizes soil-borne arsenic but not cationic metals in the presence of low-molecular-weight organic acids[J]. Science of the Total Environment, 2018, 630:1188-1194.
    [14] QIN F, SHANX Q, WEIB.Effects of low-molecular-weight organic acids and residence time on desorption of Cu, Cd, and Pb from soils[J]. Chemosphere, 2004, 57 (4):253-263.
    [15] 王果. 土壤学[M]. 北京:高等教育出版社, 2009.WANG G. Agrology[M].Beijing: Higher Education Press, 2009(in Chinese).
    [16] 孙叶芳, 谢正苗, 徐建明,等.TCLP法评价矿区土壤重金属的生态环境风险[J].环境科学, 2005,26(3):152-156.

    SUN Y F, XIE Z M, XIU J M, et al. Assessment of toxicity of heavy metal contaminated soils by toxicitycharacteristic leaching procetlure[J]. Environmental Science,2005,26(3):152-156(in Chinese).

    [17] YANW,LIUR. Comparison of characteristics of twenty-one types of biochar and their ability to remove multi-heavy metals and methylene blue in solution[J]. Fuel Processing Technology, 2017,160:55-63.
    [18] GUPTA AK,SINHA S.Assessment of single extraction methods for the prediction of bioavailability of metals to Brassica juncea L. Czern. (var. Vaibhav) grown on tannery waste contaminated soil[J].Journal of Hazardous Materials,2007,149(1):144-150.
    [19] ZHANGF, WANGX, YIND, et al.Efficiency and mechanisms of Cd removal from aqueous solution by biochar derived from water hyacinth (Eichornia crassipes)[J].Journal of Environmental Management, 2015,153: 68-73.
    [20] QIANT T, WANGY, FANT, et al. A new insight into the immobilization mechanism of Zn on biochar: The role of anions dissolved from ash[J]. Scientific Reports, 2016,6: 33630.
    [21] SHAHEENS M, TSADILASC D, RINKLEBE J. A review of the distribution coefficients of trace elements in soils: Influence of sorption system, element characteristics, and soil colloidal properties[J]. Advances in Colloid & Interface Science, 2013,201:43-56.
    [22] PARK J H, OK Y S, KIM S H, et al. Competitive adsorption of heavy metals onto sesame straw biochar in aqueous solutions[J].Chemosphere,2016,142:77-83.
    [23] TANG Q, ZHOUT, GUF. Removal of Cd(Ⅱ) and Pb(Ⅱ) from soil through desorption using citric acid: Kinetic and equilibrium studies[J]. Journal of Central South University, 2017, 24 (9):1941-1952.
    [24] 左继超,高婷婷,苏小娟,等. 外源添加磷和有机酸模拟铅污染土壤钝化效果及产物的稳定性研究[J].环境科学, 2014,35(10):3874-3881.

    ZUO J C, GAO T T, SU X J, et al. Effect of phosphate and organic acid addition on passivation of simulated Pb contaminated soil and the stability of the product[J]. Environmental Science, 2014,35(10):3874-3881(in Chinese).

    [25] MUKHERJEE A, ZIMMERMANAR, HARRIS W.Surface chemistry variations among a series of laboratory-produced biochars[J]. Geoderma, 2012, 163: 247-255.
    [26] QIAN TT, WU P, QIN QY, et al. Screening of wheat straw biochars for the remediation of soils polluted with Zn(Ⅱ) and Cd(Ⅱ)[J]. Journal of Hazardous Materials,2019,362:311-317.
  • 加载中
计量
  • 文章访问数:  2297
  • HTML全文浏览数:  2297
  • PDF下载数:  68
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-02-19

柠檬酸对生物炭钝化污染土壤中重金属稳定性的影响

    通讯作者: 董慧, E-mail: cyh@yies.org.cn
  • 1. 昆明理工大学环境科学与工程学院, 昆明, 650500;
  • 2. 云南省环境科学研究院, 昆明, 650500;
  • 3. 昆明理工大学建筑工程学院, 昆明, 650500
基金项目:

云南省重点研发计划(2018BC004)和昆明理工大学自然科学研究基金省级人培(KKSY201506058)资助.

摘要: 为了研究生物炭(BC)对重金属复合污染土壤的钝化效果以及环境条件变化后钝化产物的稳定性.在受Cd、Pb和Zn污染的土壤中添加不同比例的生物炭进行土培实验,两个月后,添加不同浓度的柠檬酸模拟植物根际环境条件,分析土壤环境条件变化后重金属钝化产物的稳定性.结果表明,与对照组相比,添加生物炭(5%和8%)显著提高了土壤的pH值、阳离子交换容量(CEC)、土壤有机质(SOM),而有效态重金属和重金属毒性浸出浓度均显著降低,且后者低于其国际标准.添加柠檬酸后,土壤pH值随柠檬酸浓度的增加呈现下降趋势;生物炭的添加比例一定时,有效态Cd (DTPA-Cd)和Cd的毒性浸出浓度(TCLP-Cd)随柠檬酸浓度的增加呈现先降低(2 mmol·kg-1)后升高(10、20 mmol·kg-1)的趋势,而有效铅(DTPA-Pb)和有效态锌(DTPA-Zn)随柠檬酸浓度的增加而上升.柠檬酸浓度一定时,有效态重金属和重金属毒性浸出浓度随生物炭的添加比例的增加而降低,当生物炭的添加比例大于5%时,TCLP-Cd和TCLP-Zn虽有所上升(与无柠檬酸相比),但均低于其国际标准.可见,生物炭可对重金属污染土壤进行有效修复,但随着环境条件的变化,被钝化的重金属会发生解吸和溶解释放,从而增强其生物有效性和环境风险,但当生物炭的添加比例较高时,会一定程度抑制重金属的解吸和溶解释放,Cd和Zn的环境风险仍处于可接受的安全水平.

English Abstract

参考文献 (26)

目录

/

返回文章
返回