高级检索

ISSN1001-3806CN51-1125/TN 网站地图

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

保偏光纤制备及其参数测试原理

张雪莲 杨鹏 刘永建 宁鼎

引用本文:
Citation:

保偏光纤制备及其参数测试原理

    通讯作者: 张雪莲, shellyshellyxue@126.com
  • 中图分类号: TN818

Principle of preparation and parameters test of polarization-maintaining fiber

    Corresponding author: ZHANG Xuelian, shellyshellyxue@126.com ;
  • CLC number: TN818

  • 摘要: 为了研制工作波长为1310 nm的保偏光纤,采用改进的化学气相沉积工艺制备了保偏光纤预制捧和应力棒,经加工、拼接、清洗、拉丝工艺后,得到几何尺寸精确的高质量保偏光纤;同时搭建了高效测试系统,采用折射近场法、远场扫描法、视频灰度技术(传输近场),分别测量了预制棒的折射率分布和几何尺寸,保偏光纤模场直径、数值孔径、几何尺寸等关键参数。结果表明,此标准化测试系统操作流程简单、结果精确;模场直径为6.26 μm,数值孔径为0.23,包涂直径80 μm/135 μm/165 μm(精度±0.7 μm);终检测试合格的光纤成品随机抽样16.25%,高低温老化实验后拍长、串音变化小。所研制的保偏光纤性能稳定,几何尺寸精确、结构均匀、损耗低,具有优良保偏性能,已广泛应用于实际生产中。
  • 图 1  保偏光纤制备工艺流程图

    Figure 1.  Flow sheet of PM fiber preparation process

    图 2  单模棒折射率差分布图

    Figure 2.  Refractivity of single-mode preform

    图 3  保偏光纤远场扫描及模场直径和数值孔径测试结果图

    Figure 3.  Far-field scanning of PM fiber and test results of MFD and NA

    图 4  半径边缘傅里叶拟合曲线

    Figure 4.  Fourier fit to radius

    表 1  特征参数测试结果

    Table 1.  Test results of characteristic parameters

    type of test diameter/
    μm
    non-circularity/
    %
    concentricity/
    μm
    cladding 79.437 0.906
    core(25.0%) 6.134 1.109 0.095
    rod C1 23.269 1.107 16.555
    rod C2 23.237 3.259 16.629
    primary 134.334 0.310 0.212
    secondary 165.142 0.280 0.013
    下载: 导出CSV

    表 2  高低温实验结果

    Table 2.  Test results of high and low temperature aging

    serial number 25 ℃ -55 ℃ 80 ℃ beat length/mm
    attenuation/dBm crosstalk/dB attenuation/dBm crosstalk/dB attenuation/dBm crosstalk/dB
    1 -13.71 -21.8 -11.98 -23.3 -12.01 -20.0 2.21
    2 -12.75 -22.1 -12.68 -23.0 -12.58 -20.5 2.24
    3 -14.81 -22.0 -14.91 -22.7 -15.06 -19.4 2.25
    4 -12.34 -23.9 -12.24 -23.8 -12.06 -21.5 2.22
    5 -13.81 -23.3 -13.44 -22.6 -13.49 -20.8 2.20
    下载: 导出CSV

    表 3  各公司参数测试结果

    Table 3.  Test results of parameters of each company

    company fiber loss/
    (dB·km-1)
    beat length/
    mm
    crosstalk/
    dB
    YOEC 0.36 2.29 -20.6
    the 46th Research Institute 0.42 2.15 -24.9
    Jiangsu Fasten Optoelectronics 0.46 2.09 -19.6
    Yangtze 0.53 2.39 -19.4
    Fenghuo communication 0.54 1.58 -29.6
    下载: 导出CSV
  • [1] 郑勇, 肖旺, 朱正伟. 一种大量程光纤弯曲损耗型线性位移传感器研究[J]. 光学学报, 2020, 40(12): 1206002.

    ZHENG Y, XIAO W, ZHU Zh W. Researd on an optial fiber linear displacenent sensor based on bending loss for use over large range[J]. Acta Optica Sinica, 2020, 40(12): 1206002(in Chinese).
    [2] 贺兴龙. 高功率掺镱全光纤激光器关键单元技术研究[D]. 武汉: 华中科技大学, 2018: 26-28.

    HE X L. Research on key cell technology of ytterbium doped high power with all-fiber structure[D]. Wuhan: Huazhong University of Science and Technology, 2018: 26-28(in Chinese).
    [3] 赵楠. 高功率掺镱光纤激光器中光子暗化效应研究[D]. 武汉: 华中科技大学, 2018: 25-27.

    ZHAO N. The study on photo-darkening effect in ytterbium doped high power fiber lasers[D]. WuHan: Huazhong University of Science and Technology, 2018: 25-27(in Chinese).
    [4]

    SCHREIBER T, RÖSER F, SCHMIDT O, et al. Stress-induced single-polarization single-transverse mode photonic crystal fiber with low nonlinearity[J]. Optics Express, 2005, 13(19): 7621-7630. doi: 10.1364/OPEX.13.007621
    [5] 谢璐. 1018 nm掺镱光纤激光器[D]. 武汉: 华中科技大学, 2014: 16-19.

    XIE L. 1018 nm Yb-doped fiber laser[D]. Wuhan: Huazhong University of Science and Technology, 2014: 16-19(in Chinese).
    [6] 长飞光纤光缆有限公司. 保偏光纤的制造方法: 200410012671.6[P]. 2004-12-29.

    YANGTZE OPTICAL FIBRE AND CABLE Co., Ltd. Manufacturing method of polarization maintaining optical fibe: 200410012671.6[P]. 2004-12-29(in Chinese).
    [7] 沈小平, 崔德运, 杨意, 等. 一种改善预制棒应力的退火装置和方法: 110818238A[P]. 2020-02-21.

    SHEN X P, CUI D Y, YANG Y, et al. An annealing device and method for improving stress of prefabricated rod: 110818238A[P]. 2020-02-21(in Chinese).
    [8]

    NADERI S, DAJANI I, GROSEK J, et al. Theoretical and numerical treatment of modal instability in high-power core and cladding-pumped Raman fiber amplifiers[J]. Optics Express, 2016, 24(15): 16550-16565. doi: 10.1364/OE.24.016550
    [9] 马静, 陈坚盾, 冯高锋, 等. 气相沉积与非气相沉积制造光纤预制棒[J]. 现代传输, 2015(6): 36-38.

    MA J, CHEN J D, FENG G F, et al. Vapor deposition and non-vapor deposition fabrication of optical fiber prefabricated rod[J]. Modern Transmission, 2015(6): 36-38(in Chinese).
    [10] 廖延彪, 黎敏, 夏历. 光纤光学[M]. 第3版. 北京: 清华大学, 2021: 199-205.

    LIAO Y B, LI M, XIA L. Fiber optics[M]. 3rd ed. Beijing: Tsinghua University, 2021: 199-205(in Chinese).
    [11] 许剑, 黄俊鹏, 张屹修, 等. 小弯曲半径下光纤宏弯损耗测试的拟合方法研究[J]. 电子元器件与信息技术, 2022, 6(1): 120-121.

    XU J, HUANG J P, ZHANG Y X, et al. Research on fitting method of photored macro variable loss test under small bending radius[J]. Electronic Components and Information Technology, 2022, 6(1): 120-121(in Chinese).
    [12] 李虎, 郭子龙, 杨文婷, 等. 空芯光纤多模干涉型光纤液位传感技术研究[J]. 激光技术, 2022, 46(1): 120-124.

    LI H, GUO Z L, YANG W T, et al. Research of the liquid level sensing technology based on a hollow fiber multimode interference optical fiber[J]. Laser Technology, 2022, 46(1): 120-124(in Chinese). 
    [13] 赵耀, 高业胜, 韩正英, 等. 保偏光纤拍长与折射率测量技术研究[J]. 计量与测试技术, 2022, 49(3): 20-25.

    ZHAO Y, GAO Y Sh, HAN Zh Y, et al. Research on the measurement of beat length and refractive index of polarization-maintaining fiber[J]. Metrology and Measurement Technology, 2022, 49(3): 20-25(in Chinese).
    [14] 广东亿源通科技股份有限公司. 一篇文章了解保偏光纤原理、快慢轴、保偏拍长、消光比[EB/OL]. (2021-04-15)[2022-11-10]. https://zhuanlan.zhihu.com/p/365064484.

    HYC Co., Ltd. An article to understand the principle of polarization-maintaining fiber, fast and slow axis, polarizing beat length, extinction ratio[EB/OL]. (2021-04-15)[2022-11-10]. https://zhuanlan.zhihu.com/p/365064484 (in Chinese).
    [15] 刘军号, 李瑞辰. 高精度干涉式光纤陀螺热漂移分析[J]. 中国光学, 2020, 13(2): 333-343.

    LIU J H, LI R Ch. Themal drift analysis of high-precision interferometric fiber optic gyroscop[J]. Chinese Optics, 2020, 13(2): 333-343(in Chinese).
    [16]

    JAIN D, JUNG Y, BARUA P, et al. Demonstration of ultra-low NA rare-earth doped step index fiber for applications in high power fiber lasers[J]. Optics Express, 2015, 23(6): 7407-7415. doi: 10.1364/OE.23.007407
    [17] 刘峰, 史毅, 葛镇昂, 等. 基于双向瑞利散射的单模光纤多参数同时测量方法[J]. 激光与电子学进展, 2023, 60(7): 0712004.

    LIU F, SHI Y, GE Zh A, et al. Muti-parameter measurement method of single mode fiber based on bidirectional Reyleigh scattering[J]. Laser & Optoelectronics Progress, 2023, 60(7): 0712004(in Chinese).
    [18] 无锡法尔胜光电科技有限公司. 一种保偏光纤的制备方法: 110746109A[P]. 2020-02-04.

    FALSON OPTOELECTRONIC TECHNOLOGY Co., Ltd. A preparation method of polarization maintaining fiber: 110746109A[P]. 2020-02-04(in Chinese).
    [19] 烽火通信科技股份有限公司, 锐光信通科技有限公司. 一种保偏光纤: 108845389B[P]. 2020-05-05.

    FENGHUO COMMUNICATION TECHNOLOGY Co., Ltd., RUI GUANG COMMUNICATION TECHNOLOGY Co., Ltd. A polarization-maintaining fiber: 108845389B[P]. 2020-05-05(in Chinese).
    [20] 薛梦驰, 左琼华. 光纤微弯损耗的新测试方法仿真算法及验证[J]. 光学学报, 2021, 41(18): 1806001.

    XUE M Ch, ZUO Q H. Simulation algorithm and verification for new test methods of microbending loss in optical fibers[J]. Acta Optica Sinica, 2021, 41(18): 1806001(in Chinese).
    [21] 王学勤, 张彤, 梁兰菊, 等. 光纤环偏振耦合分布及绕环光纤拍长测试技术[J]. 激光与光电子学进展, 2020, 57(23): 230602.

    WANG X Q, ZHANG T, LIANG L J, et al. Test technique of pola-rization-coupling distribution of fiber coil and beat length of used fiber[J]. Laser & Optoelectronics Progress, 2020, 57(23): 230602(in Chinese).
  • [1] 欧攀徐宏杰杨德伟张春熹 . 高双折射保偏光纤拍长测试及Mueller矩阵分析. 激光技术, 2009, 33(1): 15-17,56.
    [2] 贾世甄朱益清姚晓天 . 基于双光束光源的保偏光纤定轴方法研究. 激光技术, 2018, 42(6): 785-789. doi: 10.7510/jgjs.issn.1001-3806.2018.06.011
    [3] 许玲姚寿铨 . 温度对扭转光纤环性能的影响. 激光技术, 2005, 29(1): 52-55.
    [4] 武洋潘蓉杨鹏衣永青 . 基于气相沉积法的掺铒光纤制备与温度特性. 激光技术, 2023, 47(6): 841-845. doi: 10.7510/jgjs.issn.1001-3806.2023.06.016
    [5] 李雪韩志刚尹路孟令强朱日宏 . 大模场双包层光纤熔接的功率对准技术研究. 激光技术, 2017, 41(3): 337-341. doi: 10.7510/jgjs.issn.1001-3806.2017.03.007
    [6] 李虎郭子龙杨文婷张军英 . 空芯光纤多模干涉型光纤液位传感技术研究. 激光技术, 2022, 46(1): 120-124. doi: 10.7510/jgjs.issn.1001-3806.2022.01.012
    [7] 吉正继武向农殷业肖龙 . 基于高双折射光纤环镜的可调谐光滤波器. 激光技术, 2014, 38(1): 54-57. doi: 10.7510/jgjs.issn.1001-3806.2014.01.012
    [8] 王戈李康孔繁敏 . 单模光纤中椭圆双折射下偏振模色散特性研究. 激光技术, 2006, 30(5): 465-468.
    [9] 甄海龙 . 一种金填充高双折射光子晶体光纤偏振滤波器. 激光技术, 2016, 40(1): 1-4. doi: 10.7510/jgjs.issn.1001-3806.2016.01.001
    [10] 江莺段峥张晓丽胡兴柳 . 双折射光纤环镜应变传感器在线测量方法研究. 激光技术, 2020, 44(3): 315-320. doi: 10.7510/jgjs.issn.1001-3806.2020.03.008
    [11] 彭荣荣刘彬陈佳 . 单芯光子晶体光纤边孔SPR折射率传感特性研究. 激光技术, 2018, 42(5): 713-717. doi: 10.7510/jgjs.issn.1001-3806.2018.05.024
    [12] 潘志勇任军江黄剑平何耀基顾劭忆邢美术 . 一种新型折射率掺镱双包层光纤. 激光技术, 2009, 33(5): 558-560. doi: 10.3969/j.issn.1001-3806.2009.05.033
    [13] 王伟能谭晓玲田振耿优福王鹏姚建铨 . 增益导引折射率反导引光纤激光特性的研究. 激光技术, 2009, 33(5): 503-505. doi: 10.3969/j.issn.1001-3806.2009.05.012
    [14] 李远延凤平刘硕白卓娅 . 大模场掺铥光纤增益特性研究. 激光技术, 2018, 42(5): 638-645. doi: 10.7510/jgjs.issn.1001-3806.2018.05.011
    [15] 方挺欧阳强强张敬棋刘剑琴胡兴柳王彦 . 基于环绕式光纤的热风管温度解调技术. 激光技术, 2016, 40(5): 746-749. doi: 10.7510/jgjs.issn.1001-3806.2016.05.027
    [16] 王超冯国英杨浩周情李玮苏娟 . 用光线追迹法计算半锥形多模光纤的耦合效率. 激光技术, 2008, 32(4): 434-436,440.
    [17] 吕欢祝余明芯钟文博张克非 . 大模场低损耗光子晶体光纤的研究与设计. 激光技术, 2021, 45(2): 196-201. doi: 10.7510/jgjs.issn.1001-3806.2021.02.012
    [18] 陆丹葛廷武伍剑徐坤林金桐 . D形双包层大模场光纤激光偏振特性研究. 激光技术, 2009, 33(5): 509-511. doi: 10.3969/j.issn.1001-3806.2009.05.013
    [19] 黄小东张小民李明中王建军张锐赵圣之车雅良许党朋 . 高功率掺Yb3+大模场光纤放大器实验研究. 激光技术, 2009, 33(4): 400-402. doi: 10.3969/j.issn.1001-3806.2009.04.019
    [20] 李武军杨爱粉王石语蔡德芳文建国过振 . 光纤束耦合LD输出光束的空间耦合技术研究. 激光技术, 2006, 30(3): 304-307.
  • 加载中
图(4) / 表(3)
计量
  • 文章访问数:  1461
  • HTML全文浏览量:  1046
  • PDF下载量:  56
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-09
  • 录用日期:  2023-01-16
  • 刊出日期:  2024-01-25

保偏光纤制备及其参数测试原理

    通讯作者: 张雪莲, shellyshellyxue@126.com
  • 中国电子科技集团公司第四十六研究所, 天津 300220, 中国

摘要: 为了研制工作波长为1310 nm的保偏光纤,采用改进的化学气相沉积工艺制备了保偏光纤预制捧和应力棒,经加工、拼接、清洗、拉丝工艺后,得到几何尺寸精确的高质量保偏光纤;同时搭建了高效测试系统,采用折射近场法、远场扫描法、视频灰度技术(传输近场),分别测量了预制棒的折射率分布和几何尺寸,保偏光纤模场直径、数值孔径、几何尺寸等关键参数。结果表明,此标准化测试系统操作流程简单、结果精确;模场直径为6.26 μm,数值孔径为0.23,包涂直径80 μm/135 μm/165 μm(精度±0.7 μm);终检测试合格的光纤成品随机抽样16.25%,高低温老化实验后拍长、串音变化小。所研制的保偏光纤性能稳定,几何尺寸精确、结构均匀、损耗低,具有优良保偏性能,已广泛应用于实际生产中。

English Abstract

    • 光纤技术的快速发展促进了光纤测试新技术的研发和原有技术的拓展。保偏光纤中间品和成品检测是质量控制的必要步骤,而高效的测试系统可以保证产品性能,提高成品率,极大降低经济损失。因此, 对光纤制备原理和参数测试原理两者结合的研究具有重要意义[1]。但过去的研究不够全面,且知识成果较陈旧。鉴于此,本文作者从光纤生产的角度出发,理论与实际并重,系统、完整地介绍了保偏光纤制备流程、测试的技术理论和实验结果,重点显现了光纤生产的最新技术。

    • 图 1为保偏光纤制备主要工艺流程图。主要分为保偏光纤预制棒和应力棒制备、酸处理、保偏光纤单模棒和应力棒拼接、清洗、接管、拉丝、保偏光纤终检等步骤。单模预制棒制备流程包括:采用改进的化学气相沉积(modified chemical vapor deposition,MCVD)工艺制备单模棒[2]; 单模预制棒芯包尺寸和折射率检验; 套管; 单模棒退火; 包层结构加工和打孔; 单模棒尺寸检验; 单模棒酸处理清洗。将内径为19 cm、长度为70 cm的高纯石英反应管两端焊接支撑管和尾管,支撑管连接原料进料端,尾管连接尾气处理装置,然后固定在氢氧焰灯加热的车床上。氢氧焰灯沿着反应气体流动的方向缓慢移动,在氧化反应过程中,由于热泳效应[3],原料在主灯加热点反应,在热区下游沉积,当主灯向前移动时,疏松层进一步烧结,避免了疏松层颗粒脱落,玻璃化完成。接着氢氧焰灯快速移到起点,来回多次,直到反应管表面沉积所需的疏松层厚度。旋转的反应管在高温作用下变软,由于表面张力及内外压差,实现缩棒[4-5]

      图  1  保偏光纤制备工艺流程图

      Figure 1.  Flow sheet of PM fiber preparation process

      由于反应管壁厚度的限制,实心光纤预制棒的芯包比无法满足设计需要,因此选择合适的纯石英套管,将预制棒放入套管内,在MCVD车床上使用氢氧焰灯熔融。若套管过大,熔融时由于重力作用预制棒会下坠,产生椭圆形的棒,同时熔融不能与预制棒完全结合,内部产生气泡,最终拉丝时形成缺陷,影响包层结构,降低光纤强度[6]。烧结后的单模预制棒需要放入高温退火炉中进行退火处理(恒温1200 ℃,2 h→降温500 ℃,5 h),以减少单模棒内部应力[7],去除残余的小气泡。

      应力棒制备步骤为:采用MCVD工艺制备保偏光纤应力棒;应力棒尺寸和折射率检验;应力棒加工;酸处理。根据设计,沉积一定厚度的硼棒后进行缩棒,烧结透明后即得到保偏光纤应力棒。

      根据设计的芯包比,计算出合适的包层和应力棒尺寸,将折射率剖面测试合格的预制棒和应力棒在磨床上进行钻孔、打磨,并加工成需要的包层结构和应力棒尺寸[8]。本设计中先用去离子水冲加工后的单模棒内孔和应力棒,分别放入体积比为1 ∶2 ∶40的氢氟酸、盐酸和高纯水的混合酸溶液内浸泡0.5 h~1 h,去除表面划痕、杂质,同时酸溶液对预制棒成分二氧化硅也有强烈的腐蚀性,因此严格控制好腐蚀的时间,可得到尺寸更精确的光纤预制棒和应力棒;再用热的去离子水冲洗多次,去除水溶性杂质后,进行单模棒与两应力棒的拼接,分别将两应力棒放入单模棒打好的两个孔内,使用氢氧焰火抛后熔烧,固定预制棒,烘烤至管内无水汽,即可进行拉丝[9]

    • 单模棒和应力棒使用光纤预制棒折射率测试仪,通过折射近场法利用动态空间滤光片测量由横向照射预制棒而产生的折射角,以此来测量预制棒的几何尺寸和折射率的分布。理想状态下光纤中的折射率n是轴对称的,用柱坐标(rφz)分析,设光纤轴为z轴,光线方程的径向分量为:

      $ \frac{\mathrm{d}}{\mathrm{d} s}\left(n \frac{\mathrm{d} r}{\mathrm{~d} s}\right)-n r\left(\frac{\mathrm{d} \varphi}{\mathrm{d} s}\right)^2=\frac{\mathrm{d} n}{\mathrm{~d} s} $

      (1)

      式中: r为径向坐标(离轴距离);s为光线的几何路径。当光从折射率n0的介质入射到光纤的端面(z=0)r=r0φ=0处,入射角为θ0,入射平面和光纤的夹角φ=φ0,折射角为θnr0处的折射率为n(r0),由折射定律有n(r0)sinθn=n0sinθ0=sinθ0,则:

      $ n(r) \frac{\mathrm{d} z}{\mathrm{~d} s}=n\left(r_0\right) \cos \theta_n $

      (2)

      $ n(r) r^2 \frac{\mathrm{d} \varphi}{\mathrm{d} s}=n\left(r_0\right) r_0 \sin \theta_n \sin \varphi_0 $

      (3)

      将式(2)、式(3)代入式(1),并对z积分可得:

      $ \int_{r_0}^r\left[\frac{n^2(r)}{n^2\left(r_0\right) \cos ^2 \theta_n}-1-\tan ^2 \theta_n \sin ^2 \varphi_0\left(\frac{r_0}{r}\right)^2\right]^{-\frac{1}{2}} \mathrm{~d} r $

      (4)

      因此只要知道输入点坐标r0,测出折射角,就能得到折射率分布n(r)、rz的关系。

      理论上纤芯的折射率为阶跃和梯度分布,但对于实际的光纤,由于制造工艺的问题,光纤纤芯和包层的分界面,以及纤芯的折射率总有梯度变化。设计的光纤工作波长为1310 nm,而此梯度变化远小于工作波长,因此光纤芯/包分界面和纤芯中的折射率呈阶跃分布状态;纤芯的折射率可作为变折射率分布,折射率随离轴距离r的增加而不断改变,如式(5)、式(6)所示[10-12]

      $ n^2(r)=n^2(0)\left[1-2 \mathit{\Delta}\left(\frac{r}{a}\right)^2\right] $

      (5)

      $ \mathit{\Delta}=\frac{n^2(0)-n^2(r)}{2 n^2(0)} $

      (6)

      式中: a是纤芯半径;n(0)是光纤轴上的折射率;n(r)为离轴距离r处的折射率;Δ为离轴距离r处相对折射率差。由图 2可知,纤芯与包层分界处的折射率呈阶跃分布;当芯径离轴越远,折射率变化减小,锯齿状折射率分布差逐渐变短[13]

      图  2  单模棒折射率差分布图

      Figure 2.  Refractivity of single-mode preform

      本文中使用MCVD工艺制作预制棒,从测试结果可以看出,预制棒纤芯直径为光纤内部的折射率分布均匀,外径为14.2 mm,包层直径为6.12 mm,纤芯直径为2.62 mm。精确的预制棒和应力区尺寸设计,引入几何对称的不均匀应力实现高双折射现象,消除应力对入射光偏振态的影响,从而保持保偏工作[14-15]

    • 模场直径(mode-field diameter,MFD)设为D′, 使用光分析测量仪搭建测试平台,通过远场扫描法确定;采用光纤横截面基模的电磁场强度分布度量,远场光强度为F2(θ),θ为远场角,则模场直径为:

      $ D^{\prime}=\frac{\lambda}{\pi}\left[\frac{2 \int_0^{\pi / 2} F^2(\theta) \sin \theta \cos \theta \mathrm{d} \theta}{\int_0^{\pi / 2} F^2(\theta) \cos \theta \mathrm{d} \theta}\right]^{\frac{1}{2}} $

      (17)

      测量时,2 m长待测光纤的一端接注入光源,另一端接光探测器,测量出被测光纤的远场光强,经数据处理后得出远场光强度F2(θ),再根据式(7)计算得到模场直径的大小,测试结果如图 3所示。本文中的保偏光纤在入射工作波长λ=1310 nm时的模场直径D′=6.263 μm。

      图  3  保偏光纤远场扫描及模场直径和数值孔径测试结果图

      Figure 3.  Far-field scanning of PM fiber and test results of MFD and NA

      数值孔径(numerical aperture,NA)设为DNA, 同样使用远场光强法测试,其表征光接收能力,只与光纤的折射率有关[16],即:

      $ D_{\mathrm{NA}}=\sqrt{n_1^2-n_2^2} $

      (8)

      式中: n1为纤芯的折射率; n2为包层折射率。根据图 2的折射率曲线可知:n1=n0n12=1.45+0.017123=1.467,n2=n0n02=1.45-0.000221=1.449。Δn02为匹配油与包层折射率差; Δn12为纤芯与包层折射率差,代入式(8),可得DNA=0.229,再将测试数值用最小二乘法拟合,扫描测试结果如图 3所示,计算结果与测试结果一致。

    • 表征光纤的几何特征参数是纤芯/包层直径、不圆度、同心误差,即几何尺寸的测量[17-18]。本文中使用视频灰度技术(传输近场)测试保偏光纤的各特征参数,实际光纤截面形状可能是非圆、非椭圆,这时需要对整个光纤截面进行分行扫描纤芯、应力区、包层、涂层半径,计算出半径边缘表,再将测量结果采用傅里叶拟合,得到所测量的数据,此处仅介绍纤芯和包层傅里叶拟合曲线,如图 4所示。

      图  4  半径边缘傅里叶拟合曲线

      Figure 4.  Fourier fit to radius

      光纤半径傅里叶计算公式如下:

      $ \begin{gathered} R\left(\theta_1\right)=\frac{A_0}{2}+ \\ \sum_{m=1}^{n_1}\left[A_m \cos \left(m k \theta_1\right)+B_m \sin \left(m k \theta_1\right)\right] \end{gathered} $

      (9)

      式中: k是等角度间隔的中点值,k=2/T; T是光纤半径R(θ1)边界扫描数据表中极坐标(θ1R)的等角度间隔值; A0是平均半径; AmBm是正弦和余弦的模(傅里叶级数的系数); n1是傅里叶级数中模AmBm的项数,通常10<n1<20。

      $ A_0=\frac{T}{2} \int_0^T R\left(\theta_1\right) \mathrm{d} \theta_1 $

      (10)

      则直径D为:

      $ D=2 A_0 $

      (11)

      $ A_m=\frac{T}{2} \int_0^T R\left(\theta_1\right) \cos \left(m k \theta_1\right) \mathrm{d} \theta_1 $

      (12)

      $ B_m=\frac{T}{2} \int_0^T R\left(\theta_1\right) \sin \left(m k \theta_1\right) \mathrm{d} \theta_1 $

      (13)

      而不圆度Nc与最大和最小的轴半径RmaxRminA0有关,即:

      $ N_{\mathrm{c}}=\left(\frac{R_{\max }-R_{\min }}{A_0}\right) \times 100 \% $

      (14)

      图 4a所示,取极坐标(90°,39.718 μm),轴半径Rmax=39.896 μm,Rmin=39.534 μm,则包层直径为79.436 μm,将不圆度代入式(14),得到Nc=0.911%;如图 4b所示,取极坐标(90°,3.067 μm),轴半径Rmax=3.098 μm,Rmin=3.064 μm,则纤芯直径为6.134 μm,不圆度Nc计算值为1.109%。

      光分析测量系统得到的特征参数测试结果如表 1所示。表中,rod C1和rod C2分别为结构对称的两个应力区,与上述计算结果一致,纤芯和包层不圆度低,同心误差小;保偏光纤实现了包层80 μm、内涂层135 μm、外涂层165 μm的精确几何尺寸设计(直径精度±0.7 μm),应力区结构对称、涂层均匀,满足技术指标要求。

      表 1  特征参数测试结果

      Table 1.  Test results of characteristic parameters

      type of test diameter/
      μm
      non-circularity/
      %
      concentricity/
      μm
      cladding 79.437 0.906
      core(25.0%) 6.134 1.109 0.095
      rod C1 23.269 1.107 16.555
      rod C2 23.237 3.259 16.629
      primary 134.334 0.310 0.212
      secondary 165.142 0.280 0.013
    • 拉制10 km的保偏光纤随机抽样5根,每根325 m,抽样率达16.25%,光纤弯曲直径为15 cm,进行高低温老化实验。先降温到-55 ℃,保持30 min,然后升温到80 ℃,保持30 min,最后回到常温25 ℃,变温速率为1.5 ℃/min[19]。实验后的衰减、串音、拍长测试[20-21]结果如表 2所示。

      表 2  高低温实验结果

      Table 2.  Test results of high and low temperature aging

      serial number 25 ℃ -55 ℃ 80 ℃ beat length/mm
      attenuation/dBm crosstalk/dB attenuation/dBm crosstalk/dB attenuation/dBm crosstalk/dB
      1 -13.71 -21.8 -11.98 -23.3 -12.01 -20.0 2.21
      2 -12.75 -22.1 -12.68 -23.0 -12.58 -20.5 2.24
      3 -14.81 -22.0 -14.91 -22.7 -15.06 -19.4 2.25
      4 -12.34 -23.9 -12.24 -23.8 -12.06 -21.5 2.22
      5 -13.81 -23.3 -13.44 -22.6 -13.49 -20.8 2.20

      从实验结果可知,极限温度时(低温-55 ℃,高温80 ℃)光纤功率衰减与常温相比有所增大,但功率衰减和串音变化幅度小,性能稳定。经高低温老化后,每根光纤截取2 m左右测试拍长,测试得到的拍长小,数值稳定,偏振性能良好。

    • 使用本测试系统对国内主要保偏光纤生产公司长2700 m、工作波长1310 nm、包涂直径80 μm/135 μm的保偏光纤进行损耗、拍长、串音测试,结果如表 3所示。

      表 3  各公司参数测试结果

      Table 3.  Test results of parameters of each company

      company fiber loss/
      (dB·km-1)
      beat length/
      mm
      crosstalk/
      dB
      YOEC 0.36 2.29 -20.6
      the 46th Research Institute 0.42 2.15 -24.9
      Jiangsu Fasten Optoelectronics 0.46 2.09 -19.6
      Yangtze 0.53 2.39 -19.4
      Fenghuo communication 0.54 1.58 -29.6

      从测试结果可以看出,本单位研制的光纤损耗低(0.42 dB/km)、拍长短(2.15 mm)、串音小(-24.9 dB),处于国内领先水平。后续将致力于减小拍长和损耗,进一步提升保偏光纤产品性能。

    • 采用MCVD工艺制备的80 μm/135 μm型保偏光纤,其几何尺寸精确、结构均匀、具有优良的保偏性能;采用智能化的测试设备进行各项特征参数的测试,操作流程简单、测试结果高效准确,高低温实验结果证明光纤性能稳定,已广泛应用于实际生产中。

参考文献 (21)

目录

    /

    返回文章
    返回