导电大地上航空电磁系统校准

任秀艳, 殷长春, 刘云鹤, 张博, 蔡晶. 2020. 导电大地上航空电磁系统校准. 地球物理学报, 63(2): 726-735, doi: 10.6038/cjg2020M0517
引用本文: 任秀艳, 殷长春, 刘云鹤, 张博, 蔡晶. 2020. 导电大地上航空电磁系统校准. 地球物理学报, 63(2): 726-735, doi: 10.6038/cjg2020M0517
REN XiuYan, YIN ChangChun, LIU YunHe, ZHANG Bo, CAI Jing. 2020. Calibration of airborne EM system over a conductive underground. Chinese Journal of Geophysics (in Chinese), 63(2): 726-735, doi: 10.6038/cjg2020M0517
Citation: REN XiuYan, YIN ChangChun, LIU YunHe, ZHANG Bo, CAI Jing. 2020. Calibration of airborne EM system over a conductive underground. Chinese Journal of Geophysics (in Chinese), 63(2): 726-735, doi: 10.6038/cjg2020M0517

导电大地上航空电磁系统校准

  • 基金项目:

    国家重点研发计划(2018YFC0807900,课题2),国家自然科学基金项目(41530320,41774125,41904104),国家重点研发计划重点专项(2017YFC0601900,2016YFC0303100),中国科学院先导专项(XDA14020102),北京市科技计划"地球深部探测技术攻关"专项(Z181100005718001)和中央级公益性科研院所基本科研业务费专项经费(JYYWF20180103)联合资助

详细信息
    作者简介:

    任秀艳, 女, 1989年生, 博士后, 主要从事电磁勘探理论、航空电磁三维正反演研究.E-mail:jdrxy1990@163.com

    通讯作者: 殷长春, 男, 1965年生, 教授, 国家海外高端人才, 主要从事电磁勘探理论、航空和海洋电磁方面的研究.E-mail:yinchangchun@jlu.edu.cn
  • 中图分类号: P631

Calibration of airborne EM system over a conductive underground

More Information
  • 航空电磁系统校准是开展实际测量工作的基础,校准情况直接影响数据处理和解释.传统校准方法通常假设在自由空间中进行,忽略导电大地耦合影响.然而,实际工作中很难找到绝对高阻的校准场地,导电大地对系统校准和观测数据的影响无法忽视.本文以频率域航空电磁系统为例,对导电大地上航电系统校准技术和校准误差改正方法进行研究.我们首先推导了层状导电大地上水平共面和直立共轴线圈系统的校准公式,结果表明导电大地对航电系统校准尤其是水平共面装置的高频信号影响很大.针对校准过程中大地电导率已知的情况,本文采用非线性方程求解技术一次性确定校准线圈位置和Q值;在没有任何辅助信息情况下,也可直接利用实测数据计算校正因子进行迭代求解.测试结果表明该方法快速、准确、有效.考虑到系统相位和增益调整直接影响观测数据,本文提出了航空电磁数据校准误差的改正算法.实测数据误差改正结果表明,导电大地对高频信号影响严重,校准误差改正后的航空电磁数据与实际地质资料更好吻合.

  • 加载中
  • 图 1 

    航电系统校准原理图

    Figure 1. 

    AEM system calibration

    图 2 

    航空电磁系统分别位于导电半空间和自由空间中校准时航空电磁实分量Re和虚分量Im比值随校准场地电阻率变化

    Figure 2. 

    Ratios of the EM fields for the calibration of AEM system over a conductive half-space to those calibrated in the free air-space versus the earth resistivity

    图 3 

    大地导电性对校准信号相位的影响

    Figure 3. 

    Phase shift of the calibration signal resulted from the conductive ground at the calibration site

    图 4 

    相位调整导致校准信号变化示意图

    Figure 4. 

    Calibration signal change due to phase adjustment

    图 5 

    校准地大地电阻率迭代计算流程图

    Figure 5. 

    Flowing chart for searching the earth resistivity at the calibration site

    图 6 

    航空电磁实测数据改正结果(左边为原始数据计算的视电阻率,右边为改正后数据计算的视电阻率.数据来自MSE Technology Application Inc.公司)

    Figure 6. 

    Correction of the AEM data (The left column denotes the distributions of apparent resistivity before correcting the calibration error, while the right column shows the corresponding results after the calibration error corrected. Data courtesy of MSE Technology Application INC.)

    表 1 

    校准线圈位置和Q

    Table 1. 

    Position and Q-value of Q-coil

    大地电阻率
    /Ωm
    DIGHEM Standard系统 DIGHEM Resistivity系统
    7200 Hz 56 kHz 6200 Hz 25 kHz 101 kHz
    rQR/m Q rQR/m Q rQR/m Q rQR/m Q rQR/m Q
    1.0 1.662 1.033 1.732 0.759 1.956 1.194 1.774 0.784 1.375 0.422
    2.0 1.657 1.184 1.829 0.977 1.916 1.225 1.858 1.029 1.582 0.548
    3.0 1.640 1.209 1.848 1.096 1.890 1.203 1.865 1.138 1.704 0.677
    5.0 1.615 1.193 1.842 1.200 1.861 1.158 1.847 1.213 1.812 0.863
    8.0 1.595 1.156 1.820 1.239 1.840 1.117 1.820 1.223 1.857 1.026
    10.0 1.587 1.137 1.806 1.239 1.832 1.099 1.806 1.213 1.864 1.091
    20.0 1.567 1.084 1.765 1.195 1.815 1.057 1.767 1.157 1.848 1.212
    30.0 1.560 1.061 1.744 1.156 1.808 1.041 1.750 1.121 1.824 1.224
    40.0 1.556 1.048 1.732 1.130 1.805 1.032 1.740 1.099 1.807 1.214
    50.0 1.553 1.039 1.724 1.111 1.803 1.026 1.734 1.083 1.793 1.199
    80.0 1.550 1.026 1.711 1.078 1.800 1.017 1.724 1.057 1.768 1.158
    100.0 1.548 1.021 1.706 1.065 1.799 1.014 1.720 1.047 1.758 1.138
    200.0 1.546 1.011 1.696 1.036 1.797 1.007 1.713 1.026 1.734 1.084
    300.0 1.545 1.008 1.693 1.025 1.796 1.005 1.710 1.018 1.725 1.061
    500.0 1.544 1.005 1.690 1.016 1.795 1.003 1.708 1.011 1.717 1.039
    800.0 1.544 1.003 1.688 1.010 1.795 1.002 1.707 1.007 1.713 1.026
    1000.0 1.544 1.002 1.687 1.008 1.795 1.001 1.706 1.006 1.711 1.021
    注:除了DIGHEM Standard 7200 Hz线圈系统采用校准线圈同线放置外,其他全部采用旁线.nQ, dQLQ分别是校准线圈的匝数、半径和电感.校准信号实虚分量均假设为200 PPM. f=7200 Hz, rTR=7.98 m, nQ=124, dQ=0.23 m, LQ=17 mH; f=56 kHz, rTR=6.32 m, nQ=10, dQ=0.23 m, LQ=0.13 mH; f=6200 Hz, rTR=7.86 m, nQ=124, dQ=0.23 m, LQ=17 mH; f=25 kHz, rTR=7.86 m, nQ=10, dQ=0.23 m, LQ=0.13 mH; f=101 kHz, rTR=7.86 m, nQ=10, dQ=0.23 m, LQ=0.13 mH.
    下载: 导出CSV

    表 2 

    利用迭代算法确定校准场地电阻率

    Table 2. 

    Earth resistivity derived from AEM data using an iterative searching procedure

    No. ρ0
    /Ωm
    Re
    /PPM
    Im
    /PPM
    ρa1
    /Ωm
    ρaN
    /Ωm
    迭代次数
    1 1.0 1499.9 393.7 8.10 1.01 5
    2 5.0 1424.9 197.7 2.42 5.06 4
    3 10.0 1387.1 276.3 5.01 10.11 5
    4 50.0 941.7 507.6 41.8 50.38 3
    5 100.0 668.8 502.3 91.3 100.6 3
    6 500.0 203.9 296.3 490.7 501.5 2
    注:DIGHEM Standard系统56 kHz,航电系统飞行观测时高度设为30 m.
    下载: 导出CSV

    表 3 

    利用迭代算法确定校准场地电阻率的迭代过程

    Table 3. 

    Iteration procedure for searching the earth resistivity at the calibration site

    迭代次数 Re
    /PPM
    Im
    /PPM
    ρ
    /Ωm
    fg Re′
    /PPM
    Im′
    /PPM
    1 1499.9 393.7 8.10 1.189 1834.8 184.7
    2 1834.8 184.7 1.08 1.323 2042.0 205.6
    3 2042.0 205.6 1.01 1.314 2028.1 204.2
    4 2028.1 204.2 1.01 1.315 2029.1 204.3
    5 2029.1 204.3 1.01 1.315 2029.1 204.3
    注:模型为表 2中第一个模型ρ=1 Ωm.Re′和Im′为利用现有大地电阻率对校准误差改正后数据,fg为增益校正因子.
    下载: 导出CSV
  •  

    Abraham J D, Minsley B J, Bedrosian P A, et al. 2012. Airborne electromagnetic surveys for groundwater characterization.//Symposium on the Application of Geophysics to Engineering and Environmental Problems. Brisbane, Australia: Environmental & Engineering Geophysical Society, 137.

     

    Annison C, Wetherley S. 2015. Groundwater exploration using airborne electromagnetic data. International Conference on Engineering Geophysics, AI Ain, United Arab Emirates: 216-219.

     

    Cox L H, Wilson G A, Zhdanov M S. 2012.3D inversion of airborne electromagnetic data. Geophysics, 77(4):WB59-WB69. doi: 10.1190/geo2011-0370.1

     

    Deszcz-Pan M, Fitterman D V, Labson V F. 1998. Reduction of inversion errors in helicopter EM data using auxiliary information. Exploration Geophysics, 29(1-2):142-146. doi: 10.1071/EG998142

     

    Fitterman D V. 1998. Sources of calibration errors in helicopter EM data. Exploration Geophysics, 29(1-2):65-70. doi: 10.1071/EG998065

     

    Fraser D C. 1978. Resistivity mapping with an airborne multicoil electromagnetic system. Geophysics, 43(1):144-172. doi: 10.1190/1.1440817

     

    Huang H P, Fraser D C. 1999. Airborne resistivity data leveling. Geophysics, 64(2):378-385. doi: 10.1190/1.1444542

     

    Lei D, Hu X Y, Zhang S F. 2006. Development status quo of airborne electromagnetic. Contributions to Geology and Mineral Resources Research (in Chinese), 21(1):40-44, 53. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzzklc200601009

     

    Li J F, Gao W D, Wu S, et al. 2016. The anti-jamming technology of the FAEN system. Computing Techniques for Geophysical and Geochemical Exploration (in Chinese), 38(3):334-339.

     

    Press W H, Flannery B P, Teukolsky S A, et al. 1992. Numerical Recipes in Fortran 77:The Art of Scientific Computing. 2nd ed. Cambridge:Cambridge University Press.

     

    Wang S L, Wang Y Z, Sui Y Y, et al. 2011. A bird calibration device of Helicopter-borne TEM with concentric bucking loop. Chinese Journal of Geophysics (in Chinese), 54(9):2397-2406, doi:10.3969/j.issn.0001-5733.2011.09.023.

     

    Yin C C, Huang W, Ben F. 2013. The full-time electromagnetic modeling for time-domain airborne electromagnetic systems. Chinese Journal of Geophysics (in Chinese), 56(9):3153-3162, doi:10.6038/cjg20130928.

     

    Yin C C, Ren X, Liu Y H, et al. 2015. Review on airborne electromagnetic inverse theory and applications. Geophysics, 80(4):W17-W31. doi: 10.1190/geo2014-0544.1

     

    Yin C C, Zhang B, Liu Y H, et al. 2015. Review on airborne EM technology and developments. Chinese Journal of Geophysics (in Chinese), 58(8):2637-2653, doi:10.6038/cjg20150804.

     

    Zhou D Q, Tan L, Tan H D, et al. 2010. Inversion of frequency domain helicopter-borne electromagnetic data with Marquardt's method. Chinese Journal of Geophysics (in Chinese), 53(2):421-427, doi:10.3969/j.issn.0001-5733.2010.02.020.

     

    雷栋, 胡祥云, 张素芳. 2006.航空电磁法的发展现状.地质找矿论丛, 21(1):40-44, 53. doi: 10.3969/j.issn.1001-1412.2006.01.009

     

    李军峰, 高卫东, 吴珊等. 2016.频率域航电测量系统抗干扰技术研究.物探化探计算技术, 38(3):334-339. doi: 10.3969/j.issn.1001-1749.2016.03.07

     

    王世隆, 王言章, 随阳轶等. 2011.同心补偿式直升机时间域航空电磁法吊舱校准装置研究.地球物理学报, 54(9):2397-2406, doi:10.3969/j.issn.0001-5733.2011.09.023. http://www.geophy.cn//CN/abstract/abstract8176.shtml

     

    殷长春, 黄威, 贲放. 2013.时间域航空电磁系统瞬变全时响应正演模拟.地球物理学报, 56(9):3153-3162, doi:10.6038/cjg20130928. http://www.geophy.cn//CN/abstract/abstract9765.shtml

     

    殷长春, 张博, 刘云鹤等. 2015.航空电磁勘查技术发展现状及展望.地球物理学报, 58(8):2637-2653, doi:10.6038/cjg20150804. http://www.geophy.cn//CN/abstract/abstract11723.shtml

     

    周道卿, 谭林, 谭捍东等. 2010.频率域吊舱式直升机航空电磁资料的马奎特反演.地球物理学报, 53(2):421-427, doi:10.3969/j.issn.0001-5733.2010.02.020. http://www.geophy.cn//CN/abstract/abstract1161.shtml

  • 加载中

(6)

(3)

计量
  • 文章访问数: 
  • PDF下载数: 
  • 施引文献:  0
出版历程
收稿日期:  2018-08-21
修回日期:  2019-12-11
上线日期:  2020-02-05

目录