Acta Chimica Sinica ›› 2023, Vol. 81 ›› Issue (1): 64-83.DOI: 10.6023/A22100422 Previous Articles     Next Articles

Review

硫酯参与的有机催化不对称反应研究进展

王晓晨a, 季泽尧a, 刘健a, 王炳福a,b, 金辉a,*(), 张立新a,*()   

  1. a 沈阳化工大学功能分子研究所 硼镁资源开发与精细化工技术国家地方联合工程实验室 沈阳 110142
    b 辽宁科技大学化学工程学院 鞍山 110031
  • 投稿日期:2022-10-10 发布日期:2022-12-05
  • 作者简介:

    王晓晨, 1994年出生于山东菏泽, 2018年在山东第一医科大学获得学士学位, 2020年至今在张立新教授和金辉博士的指导下攻读硕士学位. 研究兴趣是发展以硫酯为底物的合成方法学合成具有潜在生物活性的分子.

    季泽尧, 1998年出生于河南南阳, 2021年毕业于吉林化工学院制药工程专业获得学士学位. 2021年至今在张立新教授和金辉博士的指导下攻读硕士学位. 研究兴趣是发展新的合成方法学合成具有潜在生物活性的分子.

    刘健, 1996年出生于辽宁鞍山, 2019年在辽宁科技大学获得学士学位. 2021年至今在张立新教授和金辉博士的指导下攻读硕士学位. 研究兴趣是发展新的合成方法学合成具有潜在生物活性的分子.

    王炳福, 1992年出生于黑龙江哈尔滨, 2015年和2018年在辽宁科技大学先后获得学士和硕士学位, 2019年至今, 在张立新教授和金辉博士的指导下攻读博士学位. 研究方向为不对称有机小分子催化.

    金辉讲师、硕士生导师. 1989年出生于辽宁丹东, 2011年在大连医科大学获得学士学位(药学). 2014年在沈阳药科大学获得硕士学位(药物化学). 2014年至2018年在韩国成均馆大学化学系学习并获得有机化学博士学位(导师:Do Hyun Ryu教授). 2018年加入沈阳化工大学功能分子研究所从事科研教学工作. 研究兴趣主要是发展新的合成方法学合成具有潜在生物活性的分子.

    张立新教授、博士生导师. 1966年出生于辽宁锦州, 1987年在兰州大学获得学士学位. 1993年在沈阳化工研究院获得硕士学位. 2000年至2004年在英国利兹大学化学系学习并获得有机化学博士学位(导师:Ronald Grigg教授). 曾就职于沈阳化工研究院(1987~2000, 高级工程师)、2016年加入沈阳化工大学, 组建功能分子研究所. 研究兴趣主要是新农药、医药创制和有机合成方法学.

  • 基金资助:
    项目受辽宁省教育厅科学研究项目(LQ2020025); 南宁市科学研究与技术开发计划项目(20201043)

Advances in Organocatalytic Asymmetric Reactions Involving Thioesters

Xiaochen Wanga, Zeyao Jia, Jian Liua, Bingfu Wanga,b, Hui Jina(), Lixin Zhanga()   

  1. a National-Local Joint Engineering Laboratory for Development of Boron and Magnesium Resources and Fine Chemical Technology and Institute of Functional Molecules, Shenyang University of Chemical Technology, Shenyang 110142
    b School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 110031
  • Received:2022-10-10 Published:2022-12-05
  • Contact: *E-mail: hjin@syuct.edu.cn; zhanglixin@syuct.edu.cn
  • Supported by:
    Science and Technology Project of Liaoning Education Department(LQ2020025); Nanning Scientific Research and Technology Development Program(20201043)

Thioesters play a very important role in biosynthesis and organic synthesis. Due to smaller orbital overlap of the C(2p) and S(3p) orbitals, the α-proton acidity of thioesters is higher than that of the related oxoesters, making thioesters useful enolate precursors in nature as well as in the laboratory. Meanwhile, thioesters are also efficient acylation reagents which can be used for the construction of ester bond and amide bond. Organocatalysis, a biomimetic catalysis usually with metal- free small organic molecules, is an emerging research field that has been booming since the beginning of the 21st century. In the past decade, many important achievements have been made in the organocatalytic asymmetric reactions involving thioester substrates, which have greatly broadened the reaction types of organocatalytic reactions with ester substrates and realized some reactions that cannot be achieved by using their oxoester analogues. The advances in organocatalytic asymmetric reactions involving thioesters are summarized in this review. According to the types of thioester substrates, these advances are classified to two types. One type is the organocatalytic asymmetric reactions with enolizable thioesters such as trifluoroethyl thioesters, malonic acid half-thioesters (MAHTs), monothiomalonates (MTMs) and dithiomalonates (DTMs). For these reactions, noncovalent interactions between catalysts and thioesters, including hydrogen bonding and ion pair interaction, have been used to promote the reaction and to achieve the high enantioselectivity. Another type is the catalytic asymmetric reactions with α,β-unsaturated thioesters. For the reaction of this type, various chiral organocatalysts, including chiral amines, ureas, NHC (N-heterocyclic carbene), isothiourea, amidine and others, not only activate the thioester substrates, but also control the enantioselectivity well through covalent and non-covalent bonds. Meanwhile, the mechanism of representative transformations will be briefly introduced and at last, the perspective in this area will be given.

Key words: thioesters, organocatalysis, asymmetric reaction, biomimetic synthesis