• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2023, Vol. 59 ›› Issue (1): 219-230.doi: 10.3901/JME.2023.01.219

• 制造工艺与装备 • 上一篇    下一篇

扫码分享

微域保护气对金属微滴喷射过程影响机制研究

周怡, 齐乐华, 罗俊, 苏林   

  1. 西北工业大学机电学院 西安 710072
  • 收稿日期:2022-01-12 修回日期:2022-07-26 出版日期:2023-01-05 发布日期:2023-03-30
  • 通讯作者: 齐乐华(通信作者),女,1957年出生,教授,博士研究生导师。主要研究方向为金属微滴喷射快速成形方法、金属半固态成形及人工智能及应用等。E-mail:qilehua@nwpu.edu.cn
  • 作者简介:周怡,男,1996年出生,博士研究生。主要研究方向为机械制造及其自动化。E-mail:yizhou@mail.nwpu.edu.cn;罗俊,男,1981年出生,副教授,博士研究生导师。主要研究方向为机械制造及其自动化、金属微滴喷射快速成形方法等。E-mail:luojun@nwpu.edu.cn
  • 基金资助:
    国家自然科学基金(51772245、51972271)和中央高校基本科研业务费专项资金(3102019ZX049)资助项目。

Investigation on the Effect Mechanism of Micro-domain Shielding Gas on Metal Droplet Ejection Process

ZHOU Yi, QI Lehua, LUO Jun, SU Lin   

  1. School of Mechatronic Engineering, Northwestern Polytechnical University, Xi'an 710072
  • Received:2022-01-12 Revised:2022-07-26 Online:2023-01-05 Published:2023-03-30

摘要: 金属微滴喷射3D打印过程需在低氧环境(氧含量低于50 ppm)下进行,现有设备常采用带除氧系统的密闭手套箱来维持低氧环境,但因其空间受限,操作不便,很难适应该技术向应用领域拓展。在微滴喷射出口处构建微域低氧环境,既可保护微滴喷射时不被氧化,又能扩大该技术应用范围并提高操作灵活性,是促进金属微滴喷射3D打印技术工程化应用的一个关键。但施加保护气会产生气流扰动,不利于微滴稳定喷射和精确沉积。为解决现有微域保护技术不足,设计开发一种新型环形射流微域保护装置,结合微域保护下的锡合金微滴喷射试验与微域气流流场模拟,揭示氧化和气流动力学对微滴喷射过程作用机制。研究发现当保护气供应不足时,金属射流由于氧化表面张力降低、黏度增大(即Oh数增大),会断裂为带锥形拖尾的单颗熔滴;当保护气供应过大时,气流在射流根部产生二次涡,使射流二次断裂,并生成多颗熔滴。最终在合适参数下打印出较长沉积距离熔合良好、堆叠整齐的锡合金立柱和尺寸均匀、落点准确的凸点阵列,证实环形射流微域保护装置的有效性。研究成果可为金属微滴喷射3D打印技术的推广应用提供关键技术支持和理论基础。

关键词: 金属微滴喷射, 微域保护气, 氧化, 气流动力学

Abstract: A closed glove box with a deaeration system is widely applied for maintaining a low-oxygen environment (the oxygen content of <50 ppm) in metal droplet-based 3D printing. However, it is disadvantageous to the industrial application of the technology because of the narrow space of a glove box. Thus, it is very significant to construct a micro-domain low-oxygen environment at the exit of metal droplet ejection, which can prevent droplets from oxidation, broaden applicability, and improve flexibility. Meanwhile, an excellent micro-domain shielding environment is a key to promoting the engineering application of metal droplet-based 3D printing. However, shielding gas will generate airflow disturbance, which inhibits the stability and accuracy of the droplet printing. To address this problem, a novel annular gas jet micro-domain shielding device is designed and developed, the mechanisms of oxidation and airflow-dynamics during tin alloy droplet ejection process are studied by the combination of experiments and simulations. Results show that when the supply of shielding gas is insufficient, oxidation will decrease the surface tension and increase the viscosity of a metal jet (i.e. the Oh value of a metal jet increases), which leads to the generation of a single droplet with a conical tail. When the supply of shielding gas is excessive, the secondary vortex appears at the root of a metal jet, which causes a secondary breakup occurs, and then multiple metal droplets are formed. Furthermore, a long well-fused tin alloy pillar with an ordered arrangement and a size-uniform bump array with accurate landing-points are successfully printed under appropriate parameters, which confirms the effectiveness of the annular gas jet micro-domain shielding device. The current investigation may provide crucial technical and theoretical support for the application of metal droplet-based 3D printing.

Key words: metal droplet ejection, micro-domain shielding gas, oxidation, airflow-dynamics

中图分类号: