Skip to main content
Log in

Effects of joint on dynamics of space deployable structure

  • Published:
Chinese Journal of Mechanical Engineering Submit manuscript

Abstract

Joints are necessary components in large space deployable truss structures which have significant effects on dynamic behavior of these joint dominated structures. Previous researches usually analyzed effects of one or fewer joint characters on dynamics of jointed structures. Effects of joint stiffness, damping, location, number, clearance and contact stiffness on dynamics of jointed structures are systematically analyzed. Cantilever beam model containing linear joints is developed based on finite element method, influence of joint on natural frequencies and mode shapes of the jointed system are analyzed. Analytical results show that frequencies of jointed system decrease dramatically when peak mode shapes occur at joint locations, and there are cusp shapes present in mode shapes. System frequencies increase with joint damping increasing, there are different joint damping to achieve maximum system damping for different joint stiffness. Joint nonlinear force-displacement is described by describing function method, one-DOF model containing nonlinear joints is established to analyze joints freeplay and hysteresis nonlinearities. Analysis results show that nonlinear effects of freeplay and hysteresis make dynamic responses switch from one resonance frequency to another frequency when amplitude exceed demarcation values. Joint contact stiffness determine degree of system nonlinearity, while exciting force level, clearance and slipping force affect amplitude of dynamic response. Dynamic responses of joint dominated deployable truss structure under different sinusoidal exciting force levels are tested. The test results show obvious nonlinear behaviors contributed by joints, dynamic response shifts to lower frequency and higher amplitude as exciting force increasing. The test results are further compared with analytical results, and joint nonlinearity tested is coincident with hysteresis nonlinearity. Analysis method of joint effects on dynamic characteristics of jointed system is proposed, which can be used in optimal design of joint parameters to achieve optimum dynamic performance of jointed system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. PUIG L, BARTON A, RANDO N. A review on large deployable structures for astrophysics missions[J]. Acta Astronautica, 2010, 67: 12–26.

    Article  Google Scholar 

  2. KIPER G, SOYLEMEZ E. Deployable space structures[C]// Proceedings of the 4th International Conference on Recent Advances in Space Technologies, Istanbul, Turkey, June 11–13, 2009: 131–138.

  3. QUINN D. Modal analysis of jointed structures[J]. Journal of Sound and Vibration, 2012, 331(1): 81–93.

    Article  Google Scholar 

  4. LAKE M S, WARREN P A, PETERSON L D. A revolute joint with linear load-displacement response for precision deployable structures[C]// Proceedings of 37th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Salt Lake City, Utah, 1996.

    Google Scholar 

  5. JEON S K. Characterization of hertzian rolling microslip in precision revolute joints for deployable space structures[D]. Boulder: University of Colorado, 2009.

    Google Scholar 

  6. LAKE M S, FUNG J, GLOSS K, et al. Experimental characterization of hysteresis in a revolute joint for precision deployable structures[C]// Proceedings of 38th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Kissimmee, FL, 1997, AIAA-97-1379.

    Google Scholar 

  7. DUTSON J D, FOLKMANA S L. A nonlinear finite element model of a truss using pinned joints[C]// Proceedings of 37th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference and Exhibit, Salt Lake City, UT, Reston, VA, 1996: 793–803.

    Google Scholar 

  8. CRAWLEY E, O’DONNELL K. Force-state mapping identification of nonlinear joints[J]. AIAA Journal, 1987, 25(7): 1 003–1 010.

    Article  Google Scholar 

  9. MASTERS B P, CRAWLEY E F. Multiple degree-of-freedom force-state component identification[J]. AIAA Journal, 1994, 32(11):2 276–2 285.

    Article  Google Scholar 

  10. BOWDEN M L. Dynamics of space structures with nonlinear joints[D]. Boston: Massachusetts Institute of Technology, 1988.

    Google Scholar 

  11. WEBSTER M, VANDER V W. Modeling beam-like space trusses with nonlinear joints[C]// Proceedings of 32nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Baltimore, MD, USA, 1991: 2 745–2 754.

    Google Scholar 

  12. LI T J, GUO J, CAO Y Y. Dynamic characteristics analysis of deployable space structures considering joint clearance[J]. Acta Astronautica, 2011, 68: 974–983.

    Article  Google Scholar 

  13. TAN G E B, PELLEGRINO S. Nonlinear vibration of cable-stiffened pantographic deployable structures[J]. Journal of Sound and Vibration, 2008, 314: 783–802.

    Article  Google Scholar 

  14. STOHLMAN O R, PELLEGRINO S. Shape accuracy of a joint-dominated deployable mast[C]// Proceedings of 51st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Orlando, Florida, April 12–15, 2010.

  15. STOHLMAN O R, PELLEGRINO S. Effects of component properties on the accuracy of a joint-dominated deployable mast[C]// Proceedings of 52nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Denver, Colorado, April 4–7, 2011.

  16. REMBALA R, OWER C. Robotic assembly and maintenance of future space stations based on the ISS mission operations experience[J]. Acta Astronautica, 2009, 65(7–8): 912–920.

    Article  Google Scholar 

  17. YAMADA K, TSUTSUMI Y J, YOSHIHARA M, et al. Integration and testing of large deployable reflector on ETS-VIII[C]// Proceedings of 21st International Communications Satellite Systems Conference and Exhibit, Yokohama, Japan, 2003: 2 217.

    Google Scholar 

  18. BROWN Jr, CHARLES G, SARABANDI K, et al. Validation of the shuttle radar topography mission height data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(8): 1 707–1 715.

    Article  Google Scholar 

  19. JOHN F S. Static stability of a three-dimensional space truss[C]// Proceedings of the XIII Space Photovoltaic Research and Technology Conference, NASA CP-3278, 1994.

    Google Scholar 

  20. UBERTINI P, GEHRELS N, CORBETT I, et al. Future of space astronomy: a global road map for the next decades[J]. Advances in Space Research, 2012, 50(1): 1–55.

    Article  Google Scholar 

  21. GUO H W, LIU R Q, DENG Z Q. Dynamic modeling and analysis of cable-strut deployable articulated mast[J]. Journal of Mechanical Engineering, 2010, 47(9): 66–71. (in Chinese)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongwei Guo.

Additional information

This project is supported by National Natural Science Foundation of China(Grant Nos. 50935002, 11002039), and Postdoctoral Science Foundation of China(Grant No. 2012T50340)

GUO Hongwei, born in 1980, is currently a lecturer at School of Mechanical and Electrical Engineering, Harbin Institute of Technology, China. He received his PhD degree from Harbin Institute of Technology, China, in 2009. His research interests include space structure design and dynamic analysis.

ZHANG Jing, born in 1985, is currently PhD candidate at School of Mechanical and Electrical Engineering, Harbin Institute of Technology, China. She received her master degree in Dalian University of Technology, China, in 2010.

LIU Rongqiang, born in 1965, is currently a professor at School of Mechanical and Electrical Engineering, Harbin Institute of Technology, China. His research interests include space deployable structures, lunar lander.

DENG Zongquan, born in 1956, is currently a professor at School of Mechanical and Electrical Engineering, Harbin Institute of Technology, China. His research interests include space structures and mechnism, lunar mobile robotics.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, H., Zhang, J., Liu, R. et al. Effects of joint on dynamics of space deployable structure. Chin. J. Mech. Eng. 26, 861–872 (2013). https://doi.org/10.3901/CJME.2013.05.861

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3901/CJME.2013.05.861

Key words

Navigation