Please wait a minute...
工程设计学报  2023, Vol. 30 Issue (1): 82-92    DOI: 10.3785/j.issn.1006-754X.2023.00.011
建模、仿真、分析与决策     
不同元件故障状态下滚动轴承的动态特性研究
涂文兵(),袁晓文,杨锦雯,杨本梦
华东交通大学 机电与车辆工程学院,江西 南昌 330013
Research on dynamic characteristics of rolling bearing under different component fault conditions
Wen-bing TU(),Xiao-wen YUAN,Jin-wen YANG,Ben-meng YANG
School of Mechatronic and Vehicle Engineering, East China Jiaotong University, Nanchang 330013, China
 全文: PDF(3808 KB)   HTML
摘要:

为探究局部故障状态下滚动轴承内部动态特性的差异性和相似性,以NU306圆柱滚子轴承为研究对象,利用有限元仿真软件ANSYS/LS-DYNA构建正常以及外圈、内圈和滚动体分别故障时的有限元模型,得到不同故障状态下滚动体的应力特性、振动特性及运动特性。结果表明,当滚动轴承的不同元件发生故障时,故障前端应力均会滞后,后端应力均会提前,其中外圈故障时应力的变化最大;外圈故障时滚动体在经过故障区域期间的振动加速度先减小后增大,内圈和滚动体故障时振动加速度先增大后减小;外圈和滚动体故障时滚动体的公转转速均比理论公转转速小,内圈故障时滚动体的公转转速比理论公转转速大。所构建的有限元模型可用于探究不同元件故障时滚动轴承内部的故障机理,可为进一步研究滚动轴承的承载能力和使用寿命提供有力的分析方法。

关键词: 滚动轴承有限元仿真局部故障动态特性    
Abstract:

In order to explore the difference and similarity of the internal dynamic characteristics of rolling bearings under local fault conditions, taking the NU306 cylindrical roller bearing as the research object, the finite element simulation software ANSYS/LS-DYNA was used to construct the finite element models under normal, outer ring fault, inner ring fault and rolling element fault. Then, the stress, vibration and motion characteristics of rolling element under different fault conditions were obtained. The results showed that when the different components of the rolling bearing failed, the front end stress could lag, and the rear end stress could advance, and the stress change in case of outer ring fault was the largest; when the outer ring failed, the vibration acceleration of the rolling element during passing through the fault area decreased first and then increased, while when the inner ring and rolling element failed, the vibration acceleration increased first and then decreased; the revolution speed of the rolling element was lower than the theoretical revolution speed when the outer ring and the rolling element failed, while the revolution speed was higher than the theoretical revolution speed when the inner ring failed. The constructed finite element model can be used to explore the internal fault mechanism of rolling bearings when different components fail, which can provide a powerful analysis method for further research on the bearing capacity and service life of rolling bearings.

Key words: rolling bearing    finite element simulation    local fault    dynamic characteristics
收稿日期: 2022-06-10 出版日期: 2023-03-06
CLC:  TH 133.3  
基金资助: 国家自然科学基金资助项目(51965018);江西省研究生创新资金资助项目(YC2020-S310)
作者简介: 涂文兵(1983—),男,江西南昌人,副教授,博士,从事轴承动力学研究,E-mail: twb-2001@163.com,https://orcid.org/0000-0001-7126-1214
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
涂文兵
袁晓文
杨锦雯
杨本梦

引用本文:

涂文兵,袁晓文,杨锦雯,杨本梦. 不同元件故障状态下滚动轴承的动态特性研究[J]. 工程设计学报, 2023, 30(1): 82-92.

Wen-bing TU,Xiao-wen YUAN,Jin-wen YANG,Ben-meng YANG. Research on dynamic characteristics of rolling bearing under different component fault conditions[J]. Chinese Journal of Engineering Design, 2023, 30(1): 82-92.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2023.00.011        https://www.zjujournals.com/gcsjxb/CN/Y2023/V30/I1/82

几何参数数值
轴承宽度b/mm19
轴承内径Di/mm30
轴承外径Do/mm72
轴承节圆直径Dm/mm51.5
轴承径向游隙cd/m0.01
内圈滚道直径di/mm42.5
外圈滚道直径do/mm62.5
滚动体直径Db/mm11
滚动体个数Z12
表1  NU306圆柱滚子轴承几何参数
图1  NU306圆柱滚子轴承接触力曲线对比
图2  NU306圆柱滚子轴承二维有限元模型
图3  施加阻尼前后有限元模型网格单元的位移
图4  NU306圆柱滚子轴承实验台
图5  内圈故障时滚动体的振动加速度对比
图6  外圈故障时滚动体的振动加速度对比
故障状态仿真频率实验频率
外圈故障166.0164.1
内圈故障256.4255.2
表2  NU306圆柱滚子轴承故障特征频率 (Hz)
图7  不同故障位置单元编号示意
图8  外圈故障前后端等效应力
故障状态外圈故障前端外圈故障后端
平均等效应力/MPa增长幅度/%平均等效应力/MPa增长幅度/%
正常1 921.51 558.3
外圈故障6 102.2217.66 457.3314.4
内圈故障1 934.70.71 846.518.5
滚动体故障1 827.1-4.92 067.932.7
表3  外圈故障前后端的平均等效应力
图9  内圈故障前后端等效应力
故障状态内圈故障前端内圈故障后端
平均等效应力/MPa增长幅度/%平均等效应力/MPa增长幅度/%
正常2 789.52 864.3
外圈故障2 950.85.82 903.31.4
内圈故障6 085.8118.26 521.1127.7
滚动体故障2 939.25.42 832.11.1
表4  内圈故障前后端平均等效应力
图10  滚动体故障前后端等效应力
故障状态滚动体故障前端滚动体故障后端
平均等效应力/MPa增长幅度/%平均等效应力/MPa增长幅度/%
正常1 699.51 636.6
外圈故障1 696.5-0.21 728.15.6
内圈故障1 801.46.01 728.35.6
滚动体故障4 772.1180.84 961.9203.3
表5  滚动体故障前后端平均等效应力
图11  外圈故障时滚动体的振动加速度
图12  内圈故障时滚动体的振动加速度
图13  滚动体故障时滚动体的振动加速度
故障状态

峰峰值

Pk/(m/s2)

峭度值Ku均方根Rms/(m/s2)脉冲指标I
外圈故障2 077.835.7139.229.3
内圈故障1 772.818.312825.2
滚动体故障2 005.533.6146.124.6
表6  不同故障状态下滚动体振动加速度的时域指标
图14  不同故障状态下滚动体的公转角速度
1 李辉龙.滚动轴承局部缺陷有限元动力学建模与尺寸演化规律研究[D].兰州:兰州理工大学,2020:1-2.
LI Hui-long. Dynamic modeling and size evolution of rolling bearing with localized defects by finite element method[D]. Lanzhou: Lanzhou University of Technology, 2020: 1-2.
2 林腾蛟,荣崎,李润方,等.深沟球轴承运转过程动态特性有限元分析[J].振动与冲击,2009,28(1):118-122. doi:10.3969/j.issn.1000-3835.2009.01.028
LIN Teng-jiao, RONG Qi, LI Run-fang, et al. Finite element analysis of dynamic characteristic in motion process for deep-groove ball bearing [J]. Journal of Vibration and Shock, 2009, 28(1): 118-122.
doi: 10.3969/j.issn.1000-3835.2009.01.028
3 姚灿江,魏领会,王海龙.RV减速器滚动轴承动态接触应力的有限元分析[J].北方工业大学学报,2016,28(3):60-65. doi:10.3969/j.issn.1001-5477.2016.03.011
YAO Can-jiang, WEI Ling-hui, WANG Hai-long. Finite element analysis of dynamic contact stress of rolling bearing of RV reducer[J]. Journal of North China University of Technology, 2016, 28(3): 60-65.
doi: 10.3969/j.issn.1001-5477.2016.03.011
4 汤武初,陈光东,孙玉超,等.基于ANSYS/LS-DYNA高速列车轴箱轴承动力学分析与故障模拟[J].现代机械,2015(5):5-10.
TANG Wu-chu, CHEN Guang-dong, SUN Yu-chao, et al. Dynamic research and fault simulation on high-speed railway axle box bearings based on ANSYS/LS-DYNA[J]. Modern Machinery, 2015(5): 5-10.
5 HE D, YANG Y, XU H. Dynamic analysis of rolling bearings with roller spalling defects based on explicit finite element method and experiment[J]. Journal of Nonlinear Mathematical Physics, 2022, 29: 219-243.
6 陈培红.基于显式动力学的滚动轴承故障分析[J].煤炭技术,2017,36(7):318-320.
CHEN Pei-hong. Failure analysis of rolling bearings based on explicit dynamics[J]. Coal Technology, 2017, 36(7): 318-320.
7 GAO Q, WU X, LI Z. Failure analysis of rolling bearings based on explicit dynamic method and theories of Hertzian contact[J]. Journal of Failure Analysis and Prevention, 2019, 19(6): 1645-1654.
8 江泽鹏,王志伟,段文军,等.回转支承局部故障动力学建模及仿真分析[J].重庆理工大学学报(自然科学),2022,36(8):152-160.
JIANG Ze-peng, WANG Zhi-wei, DUAN Wen-jun, et al. Dynamics modeling and simulation analysis of slewing bearing with local fault[J]. Journal of Chongqing University of Technology (Natural Science), 2022, 36(8): 152-160.
9 李国超,彭炜,李勇才,等.滚动轴承外圈故障的显式有限元动态仿真分析[J].中国机械工程,2012,23(23):2825-2829. doi:10.3969/j.issn.1004-132X.2012.23.011
LI Guo-chao, PENG Wei, LI Yong-cai, et al. Simulation and dynamic analysis of outer ring fault on rolling bearing using explict finite element method[J]. China Mechanical Engineering, 2012, 23(23): 2825-2829.
doi: 10.3969/j.issn.1004-132X.2012.23.011
10 SINGH S, KÖPKE U G, HOWARD C Q, et al. Analyses of contact forces and vibration response for a defective rolling element bearing using an explicit dynamics finite element model[J]. Journal of Sound and Vibration, 2014, 333(21): 5356-5377.
11 ZHANG Zhi-nan, DING Wei-min, MA Hui-fang. Local stress analysis of a defective rolling bearing using an explicit dynamic method[J]. Advances in Mechanical Engineering, 2016, 8(12): 1-9.
12 TANG Hao-hui, LIU Heng, ZHAO Yang, et al. Analysis of mechanics around a localised surface defect of cylindrical roller bearing[J]. Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics, 2019, 233(2): 391-403.
13 张志伟.基于显式动力学的圆柱滚子轴承的动力学仿真与故障模拟[D].太原:太原理工大学,2013:39-56.
ZHANG Zhi-wei. Dynamic research and fault simulation on cylindrical roller bearing based on explict dynamic[D]. Taiyuan: Taiyuan University of Technology, 2013: 39-56.
14 谢向宇,张庆,徐进,等.基于HyperMesh/LS-DYNA的航空发动机轴承内圈损伤仿真分析[J]. 轴承,2019(9):23-27.
XIE Xiang-yu, ZHANG Qing, XU Jin, et al. Simulation analysis on inner ring damage of aeroengine bearings based on HyperMesh/LS-DYNA[J]. Bearing, 2019(9): 23-27.
15 马辉,李鸿飞,俞昆,等.含局部故障的滚动轴承动力学建模及振动分析[J].东北大学学报(自然科学版),2020,41(3):343-348.
MA Hui, LI Hong-fei, YU Kun, et al. Dynamic modeling and vibration analysis of rolling bearings with local fault[J]. Journal of Northeastern University (Natural Science), 2020, 41(3): 343-348.
16 项云鹏.高速列车轴箱轴承动力学特性研究[D].南昌:华东交通大学,2020:11-22.
XIANG Yun-peng. Research on dynamic charcteristics of high speed train axle box bearings[D]. Nanchang: East China of Jiaotong University, 2020: 11-22.
17 LIU J, WU H, SHAO Y. The influence of the raceway thickness on the dynamic performances of a roller bearing[J]. Journal of Strain Analysis for Engineering Design, 2017, 52(8): 528-536.
18 涂文兵,罗丫,王朝兵,等.基于显式动力学的深沟球轴承弹性接触动态应力研究[J].机械强度,2016,38(6):1243-1247.
TU Wen-bing, LUO Ya, WANG Chao-bing, et al. Investigation on elastic contact dynamic stress of a deep-groove ball bearing based on explicit dynamics[J]. Journal of Mechanical Strength, 2016, 38(6): 1243-1247.
19 杨锦雯.圆柱滚子轴承故障机理与振动特性分析[D].南昌:华东交通大学,2020:8-17.
YANG Jin-wen. Analysis of defect mechanism and vibration characteristics of the cylindrical rolling bearing[D]. Nanchang: East China of Jiaotong University, 2020: 8-17.
[1] 谢章伟,张兴波,徐哲,张羽,张丰云,王茜,王萍萍,孙树峰,王海涛,刘纪新,孙维丽,曹爱霞. 基于数字孪生的激光加工零件表面温度监控系统的构建[J]. 工程设计学报, 2023, 30(4): 409-418.
[2] 谢博伟,金莫辉,杨洲,段洁利,屈明宇,李锦辉. 3D打印TPU材料的力学性能及模型参数研究[J]. 工程设计学报, 2023, 30(4): 419-428.
[3] 李毅,陈国华,夏铭,李波. 电主轴冷却系统设计与仿真优化[J]. 工程设计学报, 2023, 30(1): 39-47.
[4] 张龙隆,肖正明,刘江,刘卫标. 对转圆柱滚子轴承动态特性分析[J]. 工程设计学报, 2023, 30(1): 93-101.
[5] 田助新,郭明慧,曹海印. 环形油腔液体静压推力轴承动态特性的影响因素研究[J]. 工程设计学报, 2022, 29(4): 456-464.
[6] 王学军,普江华,陈明方. 自动化生产线用同步带传动升降机的动态特性分析[J]. 工程设计学报, 2022, 29(2): 212-219.
[7] 李阳, 聂羽飞. 钠燃烧试验厂房隔热密封门的设计与分析[J]. 工程设计学报, 2022, 29(1): 115-122.
[8] 严国平, 周俊宏, 钟飞, 李哲, 周宏娣, 彭震奥. 纸塑复合袋磁力压紧纠偏装置设计及优化[J]. 工程设计学报, 2021, 28(3): 367-373.
[9] 刘永江, 彭宣霖, 唐雄辉, 李华, 齐紫梅. 轴流散热风机共振失效分析与优化设计[J]. 工程设计学报, 2021, 28(2): 203-209.
[10] 张超, 韩晓明, 李强, 李池. 冲击载荷下永磁式电涡流减振器设计及动态特性分析[J]. 工程设计学报, 2020, 27(6): 786-794.
[11] 李玄, 周双武, 路松, 丁冰晓. 基于二级杠杆机构的二自由度微定位平台设计与分析[J]. 工程设计学报, 2020, 27(4): 533-540.
[12] 姜晓飞, 张冠伟, 胡永秀, 张大卫. 数控机床整机动态特性评价方法[J]. 工程设计学报, 2020, 27(2): 135-145.
[13] 罗茹楠, 牛文铁, 王晨升. 基于机电-刚柔耦合特性的进给系统动态误差影响因素分析[J]. 工程设计学报, 2019, 26(5): 561-569.
[14] 吴中义, 陈家兑, 王自勤. 一种液压式连续可变压缩比技术的研究[J]. 工程设计学报, 2018, 25(2): 142-150.
[15] 陈洪月, 刘烈北, 毛君, 宋秋爽, 袁智. 激励与滚筒振动耦合下采煤机动力学特性分析[J]. 工程设计学报, 2016, 23(3): 228-234.