Please wait a minute...
工程设计学报  2023, Vol. 30 Issue (1): 39-47    DOI: 10.3785/j.issn.1006-754X.2023.00.008
优化设计     
电主轴冷却系统设计与仿真优化
李毅1(),陈国华1,2(),夏铭1,李波1,2
1.湖北文理学院 机械工程学院,湖北 襄阳 441053
2.襄阳华中科技大学先进制造工程研究院,湖北 襄阳 441000
Design and simulation optimization of motorized spindle cooling system
Yi LI1(),Guo-hua CHEN1,2(),Ming XIA1,Bo LI1,2
1.College of Mechanical Engineering, Hubei University of Arts and Science, Xiangyang 441053, China
2.XY-HUST Advanced Manufacturing Engineering Research Institute, Xiangyang 441000, China
 全文: PDF(3401 KB)   HTML
摘要:

为解决电主轴因内部温度场复杂而造成冷却效果差的问题,设计了一种用于电主轴冷却的水冷机系统。根据电主轴热特性分析结果,提出了水冷机冷却方案,计算了相关的传热参数,并建立了电主轴温度?流速控制模型。然后,利用ANSYS Fluent软件对电主轴进行了流体冷却有限元仿真,并通过电主轴冷却实验对仿真结果进行了验证。通过对比仿真结果和实验结果可知,冷却后电主轴电机定子最高温度约下降了60%,转轴的形变量约降低了70%。结果表明:利用水冷机系统对电主轴进行冷却具有良好的冷却效果,这可为高精密机床主动热控制技术的研究提供一定的借鉴和参考。

关键词: 电主轴温度场水冷机系统有限元仿真    
Abstract:

In order to solve the problem of poor cooling effect caused by complex internal temperature field of motorized spindle, a water cooler system for motorized spindle cooling was designed. According to the analysis results of the thermal characteristics of motorized spindle, a water cooler cooling scheme was proposed, the relevant heat transfer parameters were calculated, and the temperature?velocity control model for the motorized spindle was established. Then, the finite element simulation of fluid cooling for motorized spindle was carried out by ANSYS Fluent software, and the simulation results were verified by the motorized spindle cooling experiment. By comparing the simulation results and experimental results, it could be seen that the maximum temperature of the motorized spindle motor stator decreased by 60% and the deformation of the shaft decreased by 70% after cooling. The results show that the water cooler system has a good cooling effect on the motorized spindle, which can provide a certain reference for the research of active thermal control technology of high-precision machine tools.

Key words: motorized spindle    temperature field    water cooler system    finite element simulation
收稿日期: 2022-05-30 出版日期: 2023-03-06
CLC:  TH 133.2  
基金资助: 湖北省科技重大专项资助项目(2021AAA003);湖北省自然科学基金创新发展联合基金资助项目(2022CFD081);支持企业技术创新发展专项(2021BAB011);2021年襄阳市重点科技计划项目(襄科计[2021]10号)
通讯作者: 陈国华     E-mail: trfmeliyi@163.com;59782071@163.com
作者简介: 李 毅(1996—),男,江西南昌人,硕士生,从事数控机床热误差检测与补偿技术研究,E-mail: trfmeliyi@163.com,https://orcid.org/0000-0003-0949-5233
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
李毅
陈国华
夏铭
李波

引用本文:

李毅,陈国华,夏铭,李波. 电主轴冷却系统设计与仿真优化[J]. 工程设计学报, 2023, 30(1): 39-47.

Yi LI,Guo-hua CHEN,Ming XIA,Bo LI. Design and simulation optimization of motorized spindle cooling system[J]. Chinese Journal of Engineering Design, 2023, 30(1): 39-47.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2023.00.008        https://www.zjujournals.com/gcsjxb/CN/Y2023/V30/I1/39

图1  电主轴剖面图
图2  电主轴热量分布与传递示意
图3  水冷机系统整体结构
图4  多回路供液装置原理
图5  电主轴冷却流道设计方案
几何尺寸前端流道中部流道后端流道
截面尺寸(L×H12×620×106×3
长度S1 5223 1291 124
表1  电主轴冷却流道的几何尺寸 (mm)
技术参数数值
额定功率/kW7.5
额定电压/V380
额定电流/A17
额定频率/Hz545
最高扭矩/Nm4.4
最高转速/(r/min)16 000
表2  AMS-120型高速电主轴主要技术参数
零件与冷却介质材料

密度/

(kg/m3)

导热率/

[W/(m·K)]

比热容/

[J/(kg·K)]

转轴45号钢7.8560.5434
轴承GCr157.8330670
定子8.93401390
转子8.93401390
冷却介质10.5994 184
表3  电主轴仿真模型材料参数
位置对流换热系数/[W/(m2·K)]
前端流道1 463.65~1 765.87
中部流道2 257.39~2 628.49
后端流道1 067.35~1 325.41
转轴端部8
表4  电主轴内部换热系数
图6  电主轴温度监测点分布
图7  冷却前电主轴的温度云图和形变云图
图8  冷却后电主轴的温度云图和形变云图(制冷参数优化前)
图9  冷却后电主轴的温度云图和形变云图(制冷参数优化后)
图10  冷却后电主轴主要结构的温度云图
图11  电主轴关键结构监测点温度变化
图12  电主轴关键部位监测点温度变化
图13  电主轴冷却实验现场
图14  电主轴温度变化实验结果
图15  电主轴转轴伸长量实验结果
组别对比项前端轴承组电机后端轴承组
第1组仿真值38.9556.0038.50
实验值40.8056.6039.90
相对误差/%4.751.073.64
第2组仿真值24.9028.3424.23
实验值25.7329.0524.98
相对误差/%3.332.503.09
第3组仿真值21.1022.0021.90
实验值22.4023.5023.10
相对误差/%6.166.825.48
表5  电主轴温度仿真结果与实验结果对比 (℃)
对比项第1组第2组第3组
相对误差/%3.644.836.25
仿真值0.1650.0620.048
实验值0.1710.0650.051
表6  电主轴转轴伸长量仿真结果与实验结果对比 (mm)
1 GRAMA S N, MATHUR A, BADHE A N. A model-based cooling strategy for motorized spindle to reduce thermal errors[J]. International Journal of Machine Tools and Manufacture, 2018, 132: 3-16.
2 XIANG S T, YAO X D, DU Z C, et al. Dynamic linearization modeling approach for spindle thermal errors of machine tools[J]. Mechatronics, 2018, 53: 215-228.
3 YAN Z, TAO T, HOU R, et al. A new modeling method for thermal errors of motorized spindle based on the variation characteristics of spindle temperature field[J]. The International Journal of Advanced Manufacturing Technology, 2020, 110(3/4): 989-1000.
4 ZHANG L X, GONG W J, ZHANG K, et al. Thermal deformation prediction of high-speed motorized spindle based on biogeography optimization algorithm[J]. The International Journal of Advanced Manufacturing Technology, 2018, 97(5/8): 3141-3151.
5 ZHANG Y, WANG L F, ZHANG Y D, et al. Design and thermal characteristic analysis of motorized spindle cooling system[J]. Advances in Mechanical Engineering, 2021, 13(5): 1-14.
6 HE Q, ZHANG Y, YE J, et al. Thermal characteristics of high speed motorized spindle with helical water cooling channel[J]. Recent Patents on Mechanical Engineering, 2012, 5(1): 69-76.
7 LEI C L, RUI Z Y, ZHOU Y C. Simulation and analysis for cooling system of high-speed motorized spindle[J]. Advanced Materials Research, 2014, 945-949: 1677-1680.
8 TANG Y, JING X, LI W, et al. Analysis of influence of different convex structures on cooling effect of rectangular water channel of motorized spindle[J]. Applied Thermal Engineering, 2021, 198: 117478.
9 XIA C H, FU J G, LAI J T, et al. Conjugate heat transfer in fractal tree-like channels network heat sink for high-speed motorized spindle cooling[J]. Applied Thermal Engineering, 2015, 90: 1032-1042.
10 LI K Y, LUO W J, WEI S J. Machining accuracy enhancement of a machine tool by a cooling channel design for a built-in spindle[J]. Applied Sciences, 2020, 10(11): 3991.
11 MA C, YANG J, ZHAO L, et al. Simulation and experimental study on the thermally induced deformations of high-speed spindle system[J]. Applied Thermal Engineering, 2015, 86: 251-268.
12 MENG J, HE G F, HU G C, et al. Simulation and analysis on temperature field of bearingless high speed motorized spindle[J]. International Journal of Mechanical Engineering and Robotics Research, 2019, 8(3): 380-384.
13 BRECHER C, IHLENFELDT S, NEUS S, et al. Thermal condition monitoring of a motorized milling spindle[J]. Production Engineering, 2019, 13(5): 539-546.
14 LI F, GAO J, SHI X, et al. Experimental investigation of single loop thermosyphons utilized in motorized spindle shaft cooling[J]. Applied Thermal Engineering, 2018, 134: 229-237.
15 SHI X J, YIN B T, CHEN G Q, et al. Numerical study on two-phase flow and heat transfer characteristics of loop rotating heat pipe for cooling motorized spindle[J]. Applied Thermal Engineering, 2021, 192: 116927.
16 LIU J F, ZHANG P. Thermo-mechanical behavior analysis of motorized spindle based on a coupled model[J]. Advances in Mechanical Engineering, 2018, 10(1): 1-12.
17 ZHANG Y, WANG P, LIU T, et al. Active and intelligent control onto thermal behaviors of a motorized spindle unit[J]. The International Journal of Advanced Manufacturing Technology, 2018, 98(9/12): 3133-3146.
18 LIU T, LIU D, ZHANG Y, et al. Temperature detection based transient load/boundary condition calculations for spindle thermal simulation[J]. The International Journal of Advanced Manufacturing Technology, 2020, 108(1/2): 35-46.
19 LI K Y, LUO W J, ZENG Y R, et al. Increase in accuracy of a built-in spindle by adaptive cooling control with varied coolant volume and temperature[J]. Sensors and Materials, 2020, 32(11): 3689-3706.
20 CHIEN H, JANG Y. 3-D numerical and experimental analysis of a built-in motorized high-speed spindle with helical water cooling channel[J]. Applied Thermal Engineering, 2008, 28(17/18): 2327-2336.
21 孟令聪,李陈涛,余兵,等.基于热载荷优化修正的电主轴热特性分析方法[J].机械强度,2020,42(6):1445-1452.
MENG Ling-cong, LI Chen-tao, YU Bing, et al. Thermal characteristic analysis method of motorized spindle based on thermal load optimization correction[J]. Journal of Mechanical Strength, 2020, 42(6): 1445-1452.
22 芮执元,陈涛,雷春丽,等.基于CFX的高速电主轴水冷系统的仿真分析[J].机床与液压,2014,42(7):24-28. doi:10.3969/j.issn.1001-3881.2014.07.007
RUI Zhi-yuan, CHEN Tao, LEI Chun-li, et al. Simulation analysis for water cooling system of high-speed motorized spindle based on CFX[J]. Machine Tool & Hydraulics, 2014, 42(7): 24-28.
doi: 10.3969/j.issn.1001-3881.2014.07.007
23 焦宇琳.高速电主轴新型层板冷却水套的热特性研究[D].西安:西安理工大学,2020:12-13.
JIAO Yu-lin. Study on thermal characteristics of new laminated cooling water jacket for high-speed motorized spindle[D]. Xi’an: Xi’an University of Technology, 2020: 12-13.
24 CHEN N, ZHANG K, ZHANG L X, et al. Analysis on the effects of cooling water velocity on temperature rise of motorized spindle[J]. Applied Mechanics & Materials, 2014, 543-547: 68-71.
[1] 谢章伟,张兴波,徐哲,张羽,张丰云,王茜,王萍萍,孙树峰,王海涛,刘纪新,孙维丽,曹爱霞. 基于数字孪生的激光加工零件表面温度监控系统的构建[J]. 工程设计学报, 2023, 30(4): 409-418.
[2] 谢博伟,金莫辉,杨洲,段洁利,屈明宇,李锦辉. 3D打印TPU材料的力学性能及模型参数研究[J]. 工程设计学报, 2023, 30(4): 419-428.
[3] 涂文兵,袁晓文,杨锦雯,杨本梦. 不同元件故障状态下滚动轴承的动态特性研究[J]. 工程设计学报, 2023, 30(1): 82-92.
[4] 唐绍禹,吴杰,张辉,邓兵兵,黄禹铭,黄浩. 多极式磁流变离合器温度场仿真与实验研究[J]. 工程设计学报, 2022, 29(4): 484-492.
[5] 李阳, 聂羽飞. 钠燃烧试验厂房隔热密封门的设计与分析[J]. 工程设计学报, 2022, 29(1): 115-122.
[6] 严国平, 周俊宏, 钟飞, 李哲, 周宏娣, 彭震奥. 纸塑复合袋磁力压紧纠偏装置设计及优化[J]. 工程设计学报, 2021, 28(3): 367-373.
[7] 刘永江, 彭宣霖, 唐雄辉, 李华, 齐紫梅. 轴流散热风机共振失效分析与优化设计[J]. 工程设计学报, 2021, 28(2): 203-209.
[8] 李玄, 周双武, 路松, 丁冰晓. 基于二级杠杆机构的二自由度微定位平台设计与分析[J]. 工程设计学报, 2020, 27(4): 533-540.
[9] 武聪魁, 何柏岩, 袁鹏飞. 计及金属铰链的环形可展天线热-结构分析[J]. 工程设计学报, 2020, 27(3): 349-356.
[10] 聂明争, 范勤, 王雄, 李知存. FDM技术中加热底板样式对翘曲变形的影响研究[J]. 工程设计学报, 2018, 25(4): 420-425,440.
[11] 卢燕, 王珏, 凌明祥, 杜平安. 精密离心机热变形多物理场耦合数值计算[J]. 工程设计学报, 2016, 23(1): 49-53,73.
[12] 夏 磊,江浩斌. 基于刚度匹配的汽车保险杠防撞梁改进设计[J]. 工程设计学报, 2015, 22(1): 84-88.
[13] 赵丽娟,李明昊. 基于多场耦合的采煤机摇臂壳体分析[J]. 工程设计学报, 2014, 21(3): 235-239.
[14] 苏荣华, 刘伟军, 龙日升. 不同基板预热温度对激光金属沉积成形过程温度场的影响[J]. 工程设计学报, 2009, 16(1): 44-49.
[15] 李金国,刘 红. 橡胶注射机模具加热系统温度场模拟仿真[J]. 工程设计学报, 2008, 15(4): 300-302.