王士林, 何雄奎, 宋坚利, 仲崇山, 王志翀, 齐鹏, 凌云. 双极性接触式航空机载静电喷雾系统荷电与喷雾效果试验[J]. 农业工程学报, 2018, 34(7): 82-89. DOI: 10.11975/j.issn.1002-6819.2018.07.011
    引用本文: 王士林, 何雄奎, 宋坚利, 仲崇山, 王志翀, 齐鹏, 凌云. 双极性接触式航空机载静电喷雾系统荷电与喷雾效果试验[J]. 农业工程学报, 2018, 34(7): 82-89. DOI: 10.11975/j.issn.1002-6819.2018.07.011
    Wang Shilin, He Xiongkui, Song Jianli, Zhong Chongshan, Wang Zhichong, Qi Peng, Ling Yun. Charging and spraying performance test of bipolar contact electrostatic spraying system for unmanned aerial vehicle[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(7): 82-89. DOI: 10.11975/j.issn.1002-6819.2018.07.011
    Citation: Wang Shilin, He Xiongkui, Song Jianli, Zhong Chongshan, Wang Zhichong, Qi Peng, Ling Yun. Charging and spraying performance test of bipolar contact electrostatic spraying system for unmanned aerial vehicle[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(7): 82-89. DOI: 10.11975/j.issn.1002-6819.2018.07.011

    双极性接触式航空机载静电喷雾系统荷电与喷雾效果试验

    Charging and spraying performance test of bipolar contact electrostatic spraying system for unmanned aerial vehicle

    • 摘要: 该文针对航空施药植保无人机设计了双极性接触式航空机载静电喷雾系统,分别对该系统喷施静电油剂和水的荷电与雾化效果进行了测试。将该航空静电喷雾系统搭载于3WQF120-12型油动单旋翼植保无人机喷施静电油剂,并使用该植保无人机自带喷雾系统分别喷施静电油剂和常规水基化药剂,对比了3种施药方式的沉积分布均匀性和对小麦蚜虫、锈病的防治效果。试验结果表明:当喷雾液为水时,静电喷雾系统的静电电压和极性不会改变水的雾滴谱;当喷雾液为静电油剂时,正电荷使雾滴粒径减小,负电荷使雾滴粒径增大,且静电喷头的雾滴相对粒谱宽度随静电电压的增加而增大;喷雾液的荷质比与静电电压正相关,相同静电电压和输出电极下水的荷质比大于静电油剂,同一静电电压下负输出雾化喷头药液的荷质比高于正输出。小麦大田试验表明:使用静电喷雾系统喷施静电油剂的雾滴沉积分布均匀性最好,其单位面积沉积量为0.048 6 ?g/cm2,沉积量的标准偏差为0.015 ?g/cm2,变异系数为30.43%;使用无人机自带喷雾系统喷施静电油剂和常规水基化药剂的单位面积沉积量分别为0.051 3和0.035 6 ?g/cm2,标准偏差分别为0.019和0.016 ?g/cm2,变异系数分别为42.57%和45.54%;喷施静电油剂的2个处理对麦蚜和锈病的防治效果和药效期均明显高于水基化药剂,使用静电喷雾系统的测试在药后7 d对蚜虫防治效果为87.92%,明显高于无人机自带喷雾系统喷施静电油剂76.43%的防治效果。该静电喷雾系统配合喷施静电油剂可提高沉积分布均匀性,增加防治的持效期和效果。

       

      Abstract: Abstract: In recent years, pesticide application using unmanned aerial vehicle (UAV) has developed rapidly in China. It is very suitable for complex terrain, highly efficient, and capable of dealing with sudden disasters at low risk. Meanwhile, it can reduce the harm of pesticides to human and environmental pollution. However, aerial application is very sensitive to meteorological conditions, which leads to increase of spray drift and nonuniform deposition distribution. A bipolar contact charging electrostatic (BCCE) spraying system for UAV was designed. The electrostatic spray system consisted of power source of electrostatic generator, power source of spray unit, electrostatic generator unit (with power switch and voltage regulator), positive and negative output electrode, tanks, pumps, controller and centrifugal atomizers. The electrostatic generator unit was the key component of BCCE spraying system, which consisted of a negative output electrostatic generator and a positive output electrostatic generator in series connection. The electrostatic generator unit could not only enhance the charging effort but also ensure the electric balance on UAV. The electrostatic spraying system included 2 separate tanks, which were connected to the positive and negative output electrodes of the high voltage electrostatic generator, respectively. So spraying liquid in different tanks was charged positively or negatively, and the charged liquid was atomized into droplets by centrifugal nozzles and then adsorbed onto the leaves of the crop. The output voltage of BCCE spraying system could be adjusted from 15 to 35 kV, and its pump pressure varied from 0.02 to 0.1 MPa. The charge-mass ratio (CMR) and droplet spectrum of spraying liquid for electro-chargeable liquid (ED) and water were measured in the laboratory. The result showed that the volume medium diameter (VMD) of ED was significantly smaller than that of water sprayed by atomizers of BCCE spraying system connected with the positive and the negative output electrode. For water spraying, using BCCE spraying system in different electrostatic voltage (EV), there were no significant differences in VMD and relative span (RS) in both output electrodes; meanwhile, the atomizer of positive voltage could reduce the VMD of ED, while atomizer of negative voltage could enhance the VMD of ED. When the spray liquid was ED, the RSs of droplet spectrum increased as the increase of EV supplied by the positive and negative output electrodes. The test of charging performance showed that the CMR of spray liquids charged by positive and negative output electrodes both increased with the increase of EV. Using the same EV and output electrode, the CMR of water was much higher than ED. With the same EV and spray liquid the CMR charged by negative output electrode was obviously higher than positive output electrode. Experiments were conducted in wheat field, the BCCE spraying system was carried by a single rotor motor UAV 3WQF120-12 to spray ED, and the original spraying system of 3WQF120-12 equipped with 2 LU120-01 nozzles spraying ED and water-based pesticide was chosen for the comparison on pesticide deposition and control effect of wheat aphid and rust. The field experiment result showed that the deposition amounts of both ED treatments were 0.048 6 and 0.051 3 μg/cm2, respectively, which were significantly higher than that of the water-based pesticide solution with 0.035 6 μg/cm2. The ED treatment sprayed by BCCE spraying system had the best uniformity in deposition with a standard deviation of 0.015 μg/cm2 and a coefficient of variation of 30.43%. The control efficiency and pesticide persistence of 2 ED treatments on wheat aphid and rust were significantly higher than the conventional water-based treatment. There was no significant difference in control efficiency of rust, and in wheat aphid 14 days after treatment between 2 ED treatments. In addition, the control efficiency of wheat aphid 7 days after treatment for BCCE spraying system was 87.92%, which was significantly higher than that for the UAV's original spraying system that was 76.43%. Therefore, the BCCE spraying system with ED can improve the uniformity of deposition and increase biological control effect.

       

    /

    返回文章
    返回