喜马拉雅山脉中段南坡孢粉垂直分布特征及影响因素

张润鑫, 张心语, 姚昕, 王文轩, 秦问, 田芳, 曹现勇. 喜马拉雅山脉中段南坡孢粉垂直分布特征及影响因素[J]. 第四纪研究, 2023, 43(1): 300-309. doi: 10.11928/j.issn.1001-7410.2023.01.25
引用本文: 张润鑫, 张心语, 姚昕, 王文轩, 秦问, 田芳, 曹现勇. 喜马拉雅山脉中段南坡孢粉垂直分布特征及影响因素[J]. 第四纪研究, 2023, 43(1): 300-309. doi: 10.11928/j.issn.1001-7410.2023.01.25
张润鑫, 张心语, 姚昕, 王文轩, 秦问, 田芳, 曹现勇. 喜马拉雅山脉中段南坡孢粉垂直分布特征及影响因素[J]. 第四纪研究, 2023, 43(1): 300-309. doi: 10.11928/j.issn.1001-7410.2023.01.25 ZHANG Runxin, ZHANG Xinyu, YAO Xin, WANG Wenxuan, QIN Wen, TIAN Fang, CAO Xianyong. Vertical distribution of modern pollen assemblages and potential driving factors on the southern slope of the middle Himalayas[J]. Quaternary Sciences, 2023, 43(1): 300-309. doi: 10.11928/j.issn.1001-7410.2023.01.25
Citation: ZHANG Runxin, ZHANG Xinyu, YAO Xin, WANG Wenxuan, QIN Wen, TIAN Fang, CAO Xianyong. Vertical distribution of modern pollen assemblages and potential driving factors on the southern slope of the middle Himalayas[J]. Quaternary Sciences, 2023, 43(1): 300-309. doi: 10.11928/j.issn.1001-7410.2023.01.25

喜马拉雅山脉中段南坡孢粉垂直分布特征及影响因素

  • 基金项目:

    国家自然科学基金项目(批准号: 42071107)和国家自然科学基金"青藏高原地球系统基础科学中心项目"(批准号: 41988101)共同资助

详细信息

Vertical distribution of modern pollen assemblages and potential driving factors on the southern slope of the middle Himalayas

More Information
  • 研究现代孢粉沿海拔梯度分布、传播特征及其驱动因素, 有助于提高基于孢粉重建古植被和古气候的可靠性。喜马拉雅山是全球中纬地区落差最大的山脉之一, 其中段南坡植被垂直带谱完整, 目前尚缺乏该垂直带谱孢粉现代过程研究。本研究通过喜马拉雅山脉中段南坡不同海拔26个表土样品(海拔梯度为3551~4444m)的孢粉分析并整合前人表土孢粉数据(n=138, 海拔梯度涵盖132~5000m), 系统分析了孢粉(包括组成、百分比含量、浓度及多样性)的垂直分异规律及其与气候、土地利用之间的关系。研究结果显示孢粉组合垂直分布特征能很好地代表植被垂直分布特征, 年降水和暖季气温是影响孢粉分布的重要气候要素。孢粉丰富度沿海拔梯度无明显分异特征; 而孢粉均匀度随海拔升高而显著降低(特别是海拔3500m以上区域), 能够代表植被群落随海拔的变化特征。常见乔木植物花粉(松属、云杉属、桦木属和栎属等)存在明显的向高海拔传播现象, 且不同类型间传播能力差异较大; 而柏科花粉传播能力差, 能很好地指示局地植被。表土样品孢粉浓度随海拔升高呈现降低趋势, 且高海拔地区较低的孢粉浓度一定程度上放大了由低海拔传播而来的乔木植物花粉对孢粉组合的影响。研究结果提示我们应注意乔木植物花粉传播能力差异对地层孢粉谱解释的可能影响。

  • 加载中
  • 图 1 

    喜马拉雅山脉中段南坡表层土壤样点(138个)分布图

    Figure 1. 

    Distribution of the soil-surface samples(n=138)collected from the southern slope of the middle Himalayas

    图 2 

    喜马拉雅山脉中段南坡表土孢粉(138个)在海拔梯度上的分布特征

    Figure 2. 

    Pollen diagram of soil-surface samples(n=138)along the elevational gradient on the southern slope of the middle Himalayas

    图 3 

    喜马拉雅山脉中段南坡孢粉数据RDA分析结果

    Figure 3. 

    RDA results based on pollen percentages of major taxa from soil-surface samples on the southern slope of the middle Himalayas.

    表 1 

    基于32个主要孢粉类型和气候变量的RDA分析结果

    Table 1. 

    Summary statistics for RDA with 32major pollen species and climatic variables

    气候变量 VIF(运行1) VIF(运行2) VIF(运行3) 气候变量作为唯一预测因子 约束轴置换检验
    方差解释量(%) 方差解释量(%) p
    Pann 25.7 24.6 4.9 21.5 12.6 0.001
    Mtwq 387.8 184.5 4.9 22.1 13.3 0.001
    Mtcq 1326.3 306.4
    Tann 2218.4
    下载: 导出CSV
  • [1]

    Chen F, Zhang J, Liu J, et al. Climate change, vegetation history, and landscape responses on the Tibetan Plateau during the Holocene: A comprehensive review[J]. Quaternary Science Reviews, 2020, 243: 106444. doi:10.1016/j.quascirev.2020.106444.

    [2]

    Shen M, Piao S, Dorji T, et al. Plant phenological responses to climate change on the Tibetan Plateau: Research status and challenges[J]. National Science Review, 2015, 2 (4): 454-467. doi: 10.1093/nsr/nwv058

    [3]

    杨振京, 徐建明. 孢粉-植被-气候关系研究进展[J]. 植物生态学报, 2002, 26(S1): 73-81. https://www.cnki.com.cn/Article/CJFDTOTAL-ZWSB2002S1010.htm

    Yang Zhenjing, Xu Jianming. Research progress on pollen-vegetation-climate relationship[J]. Chinese Journal of Plant Ecology, 2002, 26(S1): 73-81. https://www.cnki.com.cn/Article/CJFDTOTAL-ZWSB2002S1010.htm

    [4]

    许清海, 李曼玥, 张生瑞, 等. 中国第四纪花粉现代过程: 进展与问题[J]. 中国科学: 地球科学, 2015, 45 (11): 1661-1682. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201511005.htm

    Xu Qinghai, Li Manyue, Zhang Shengrui, et al. Modern process of Quaternary pollen in China: Progress and problems[J]. Science China: Earth Sciences, 2015, 45 (11): 1661-1682. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201511005.htm

    [5]

    Wang Y, Herzschuh U. Reassessment of Holocene vegetation change on the upper Tibetan Plateau using the pollen-based REVEALS model[J]. Review of Palaeobotany and Palynology, 2011, 168 (1): 31-40. doi: 10.1016/j.revpalbo.2011.09.004

    [6]

    孔昭宸, 杜乃秋, 山发寿. 青藏高原晚新生代以来植被时空变化的初步探讨[J]. 微体古生物学报, 1996, 13 (4): 339-351. https://www.cnki.com.cn/Article/CJFDTOTAL-WSGT604.002.htm

    Kong Zhaochen, Du Naiqiu, Shan Fashou. A preliminary discussion on the temporal and spatial changes of vegetation since the Late Cenozoic era on the Tibetan Plateau[J]. Acta Micropalaeontologica Sinica, 1996, 133 (4): 339-351. https://www.cnki.com.cn/Article/CJFDTOTAL-WSGT604.002.htm

    [7]

    刘佳. 晚新生代天水盆地孢粉记录的气候变化与青藏高原隆升[D]. 兰州: 兰州大学博士学位论文, 2016: 1-42.

    Liu Jia. Late Cenozoic Climate Change and Uplift of the Tibetan Plateau-Palynological Evidence from the Tianshui Basin[D]. Lanzhou: The PhD Dissertation of Lanzhou University, 2016: 1-42.

    [8]

    黄荣, 许清海, 田芳, 等. 内蒙古典型草原和草甸草原相对花粉产量重估[J]. 第四纪研究, 2021, 41 (6): 1727-1737. http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2021.06.18

    Huang Rong, Xu Qinghai, Tian Fang, et al. Re-estimated relative pollen productivity of typical steppe and meadow steppe in Inner Mongolia[J]. Quaternary Sciences, 2021, 41 (6): 1727-1737. http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2021.06.18

    [9]

    李琳, 李宜垠. 长白山阔叶红松林花粉通量的时空变化及其与气象因子的关系[J]. 第四纪研究, 2021, 41 (6): 1749-1763. http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2021.06.20

    Li Lin, Li Yiyin. Temporal and spatial variation of pollen influx and its relationship with meteorological factors in broad-leaved Korean pine forest in Changbai Mountains[J]. Quaternary Sciences, 2021, 41 (6): 1749-1763. http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2021.06.20

    [10]

    Qin F, Bunting M J, Zhao Y, et al. Relative pollen productivity estimates for alpine meadow vegetation, northeastern Tibetan Plateau[J]. Vegetation History and Archaeobotany, 2020, 29 (4): 447-462. doi: 10.1007/s00334-019-00751-4

    [11]

    Cao X, Tian F, Li K, et al. Lake surface sediment pollen dataset for the alpine meadow vegetation type from the eastern Tibetan Plateau and its potential in past climate reconstructions[J]. Earth System Science Data, 2021, 13 (7): 3525-3537. doi: 10.5194/essd-13-3525-2021

    [12]

    Herzschuh U. Reliability of pollen ratios for environmental reconstructions on the Tibetan Plateau[J]. Journal of Biogeography, 2007, 34 (7): 1265-1273. doi: 10.1111/j.1365-2699.2006.01680.x

    [13]

    梁琛, 赵艳, 秦锋, 等. 孢粉-气候定量重建方法体系的建立及其应用——以青藏高原东部全新世温度重建为例[J]. 中国科学: 地球科学, 2020, 50 (7): 977-994. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK202007008.htm

    Liang Chen, Zhao Yan, Qin Feng, et al. Pollen-based Holocene quantitative temperature reconstruction on the eastern Tibetan Plateau using a comprehensive method framework[J]. Science China: Earth Sciences, 2020, 50 (7): 977-994. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK202007008.htm

    [14]

    Hou H. Vegetation of China with reference to its geographical distribution[J]. Annals of the Missouri Botanical Garden, 1983, 70 (3): 509-548. doi: 10.2307/2992085

    [15]

    Jiang D, Lang X, Tian Z, et al. Last Glacial Maximum climate over China from PMIP simulations[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 309 (3-4): 347-357. doi: 10.1016/j.palaeo.2011.07.003

    [16]

    Zhao C, Rohling E J, Liu Z, et al. Possible obliquity-forced warmth in Southern Asia during the last glacial stage[J]. Science Bulletin, 2021, 66 (11): 1136-1145. doi: 10.1016/j.scib.2020.11.016

    [17]

    孙湘君, 杜乃秋, 陈因硕, 等. 西藏色林错湖相沉积物的花粉分析[J]. 植物学报, 1993, 35 (12): 943-950. https://www.cnki.com.cn/Article/CJFDTOTAL-ZWXB199312008.htm

    Sun Xiangjun, Du Naiqiu, Chen Yinshuo, et al. Holocene palynological records in Lake Selincuo, northern Xizang[J]. Chinese Bulletin of Botany, 1993, 35 (12): 943-950. https://www.cnki.com.cn/Article/CJFDTOTAL-ZWXB199312008.htm

    [18]

    Shen J, Liu X, Matsumoto R, et al. A high-resolution climatic change since the Late Glacial Age inferred from multi-proxy of sediments in Qinghai Lake[J]. Science in China(Series D), 2005, 48 (6): 742-751.

    [19]

    Herzschuh U, Borkowski J, Schewe J, et al. Moisture-advection feedback supports strong Early-to-mid Holocene monsoon climate on the eastern Tibetan Plateau as inferred from a pollen-based reconstruction[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2014, 402: 44-54. doi:10.1016/j.palaeo.2014.02.022.

    [20]

    Wang Y, Herzschuh U, Shumilovskikh L S, et al. Quantitative reconstruction of precipitation changes on the NE Tibetan Plateau since the Last Glacial Maximum-Extending the concept of pollen source area to pollen-based climate reconstructions from large lakes[J]. Climate of the Past, 2014, 10 (1): 21-39. doi: 10.5194/cp-10-21-2014

    [21]

    Zhu L, Lü X, Wang J, et al. Climate change on the Tibetan Plateau in response to shifting atmospheric circulation since the LGM[J]. Scientific Reports, 2015, 5: 13318. doi:10.1038/srep13318.

    [22]

    Ma Q, Zhu L, Lü X, et al. Late glacial and Holocene vegetation and climate variations at Lake Tangra Yumco, central Tibetan Plateau[J]. Global and Planetary Change, 2019, 174: 16-25. doi:10.1016/j.quascirev.2017.09.002.

    [23]

    沈才明, 唐领余, 王苏民, 等. 若尔盖盆地RM孔孢粉记录及其年代序列[J]. 科学通报, 2005, 50 (3): 246-254. doi: 10.3321/j.issn:0023-074X.2005.03.009

    Shen Caiming, Tang Lingyu, Wang Sumin, et al. Records of sporopollen from the RM hole in the Ruoergai Basin and its chronological sequence[J]. Chinese Science Bulletin, 2005, 50 (3): 246-254. doi: 10.3321/j.issn:0023-074X.2005.03.009

    [24]

    黄赐璇, 艾利斯·冯·康波, 让·弗朗索瓦士·多布雷梅. 西藏西部表土孢粉研究[J]. 干旱区地理, 1993, 16 (4): 75-84. https://www.cnki.com.cn/Article/CJFDTOTAL-GHDL199304012.htm

    Huang Cixuan, von Ellis Compo, Jean Françoise Dobreme. A study on pollen in surface soil from the western Tibet[J]. Arid Land Geography, 1993, 16 (4): 75-84. https://www.cnki.com.cn/Article/CJFDTOTAL-GHDL199304012.htm

    [25]

    Li Q, Ge Q, Tong G. Modern pollen-vegetation relationship based on discriminant analysis across an altitudinal transect on Gongga Mountain, eastern Tibetan Plateau[J]. Chinese Science Bulletin, 2012, 57 (35): 4600-4608. doi: 10.1007/s11434-012-5236-6

    [26]

    Zhang R, Tian F, Xu Q, et al. Representation of modern pollen assemblage to vertical variations of vegetation and climate in the Yadong area eastern Himalaya[J]. Quaternary International, 2020, 536: 45-51. doi:10.1016/j.quaint.2019.11.036.

    [27]

    李玉梅, 杨振京, 张芸, 等. 新疆博尔塔拉河表土孢粉组合与植被关系研究[J]. 地理科学, 2014, 34 (12): 1518-1525. doi: 10.13249/j.cnki.sgs.2014.12.014

    Li Yumei, Yang Zhenjing, Zhang Yun, et al. Surface pollen assemblages and vegetation relationships in the Bortala River Basin of Xinjiang[J]. Scientia Geographica Sinica, 2014, 34 (12): 1518-1525. doi: 10.13249/j.cnki.sgs.2014.12.014

    [28]

    许英勤, 阎顺, 贾宝全, 等. 天山南坡表土孢粉分析及其与植被的数量关系[J]. 干旱区地理, 1996, 19 (3): 24-30. https://www.cnki.com.cn/Article/CJFDTOTAL-GHDL199603003.htm

    Xu Yingqin, Yan Shun, Jia Baoquan, et al. Numerical relationship between the surface spore-pollen and surrounding vegetation on the southern slope of Tianshan Mountains[J]. Arid Land Geography, 1996, 19 (3): 24-30. https://www.cnki.com.cn/Article/CJFDTOTAL-GHDL199603003.htm

    [29]

    沈泽昊, 方精云, 刘增力, 等. 贡嘎山东坡植被垂直带谱的物种多样性格局分析[J]. 植物生态学报, 2001, 25 (6): 721-732. doi: 10.3321/j.issn:1005-264X.2001.06.013

    Shen Zehao, Fang Jingyun, Liu Zengli, et al. Patterns of biodiversity along the vertical vegetation spectrum of the east aspect of Gongga Mountain[J]. Chinese Journal of Plant Ecology, 2001, 25 (6): 721-732. doi: 10.3321/j.issn:1005-264X.2001.06.013

    [30]

    李吉均, 文世宣, 张青松, 等. 青藏高原隆起的时代、幅度和形式的探讨[J]. 中国科学(D辑), 1979, (6): 608-616. http://ir.nigpas.ac.cn/handle/332004/7854.

    Li Jijun, Wen Shixuan, Zhang Qingsong, et al. Discussion on the era, magnitude and form of uplift on the Tibetan Plateau[J]. Science in China(Series D), 1979, (6): 608-616. http://ir.nigpas.ac.cn/handle/332004/7854.

    [31]

    李吉均, 方小敏, 潘保田, 等. 新生代晚期青藏高原强烈隆起及其对周边环境的影响[J]. 第四纪研究, 2001, 21 (5): 381-391. doi: 10.3321/j.issn:1001-7410.2001.05.001 http://www.dsjyj.com.cn/article/id/dsjyj_9378

    Li Jijun, Fang Xiaomin, Pan Baotian, et al. Strong uplift of the Tibetan Plateau in the Late Cenozoic Era and its impact on the surrounding environment[J]. Quaternary Sciences, 2001, 21 (5): 381-391. doi: 10.3321/j.issn:1001-7410.2001.05.001 http://www.dsjyj.com.cn/article/id/dsjyj_9378

    [32]

    李秀美, 朱二雷, 王明达, 等. 喜马拉雅山南坡海拔梯度表土GDGTs分布特征及其指示意义[J]. 第四纪研究, 2017, 37 (6): 1226-1237. http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2017.06.07

    Li Xiumei, Zhu Erlei, Wang Mingda, et al. Distributions of glycerol dialkyl glycerol tetraether lips along an altitudinal transect on the southern slope of Mt. Himalaya and their indicating significanc[J]. Quaternary Sciences, 2017, 37 (6): 1226-1237. http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2017.06.07

    [33]

    马彦明. 关于喜马拉雅山垂直自然带的一些思考[J]. 考试周刊, 2012, (82): 133-134. https://www.cnki.com.cn/Article/CJFDTOTAL-KDZK201282123.htm

    Ma Yanming. Some thoughts on the vertical natural belt of the Himalayas[J]. Kaoshi Zhoukan, 2012, (82): 133-134. https://www.cnki.com.cn/Article/CJFDTOTAL-KDZK201282123.htm

    [34]

    Kandel P, Chettri N, Chaudhary R, et al. Plant diversity of the Kangchenjunga landscape, eastern Himalayas[J]. Plant Diversity, 2019, 41 (3): 13.

    [35]

    Tiwari A, Yadav U, Kumar R. Plant endemism in the Nepal Himalayas and phytogeographical implications[J]. Plant Diversity, 2019, 41 (3): 9.

    [36]

    田立德, 姚檀栋, 余武生, 等. 青藏高原水汽输送与冰芯中稳定同位素记录[J]. 第四纪研究, 2006, 26 (2): 145-152. http://www.dsjyj.com.cn/article/id/dsjyj_8623

    Tian Lide, Yao Tandong, Yu Wusheng, et al. Water vapor transport and stable isotope recording in ice cores on the Tibetan Plateau[J]. Quaternary Sciences, 2006, 26 (2): 145-152. http://www.dsjyj.com.cn/article/id/dsjyj_8623

    [37]

    Ghosh R, Bruch A A, Portmann F, et al. A modern pollen-climate dataset from the Darjeeling area, eastern Himalaya: Assessing its potential for past climate reconstruction[J]. Quaternary Science Reviews, 2017, 174: 63-79. doi:10.1016/j.quascirev.2017.09.002.

    [38]

    郑度, 陈伟烈. 东喜马拉雅植被垂直带的初步研究[J]. Journal of Integrative Plant Biology, 1981, 23 (3): 228-234. https://www.cnki.com.cn/Article/CJFDTOTAL-ZWXB198103010.htm

    Zheng Du, Chen Weilie. A preliminary study on the vertical zone of vegetation in the eastern Himalayas[J]. Journal of Integrative Plant Biology, 1981, 23 (3): 228-234. https://www.cnki.com.cn/Article/CJFDTOTAL-ZWXB198103010.htm

    [39]

    李景吉. 喜马拉雅地区种子植物分化及其对隆升过程的响应[D]. 成都: 成都理工大学博士学位论文, 2014: 50-72.

    Li Jingji. The Seed Plants Differentiation and It's Response to the Uplifts in Himalayans[D]. Chengdu: The PhD Dissertation of Chengdu University of Technology, 2014: 50-72.

    [40]

    Fægri K, Iversen J, Krzywinski K. Textbook of Pollen Analysis[M]. 4th ed. Caldwell: The Blackburn Press, 1989: 69-89.

    [41]

    姚付龙, 马春梅, 朱诚, 等. 中国西天山北坡表土花粉与区域植被关系[J]. 古生物学报, 2021, 60 (3): 471-482. https://www.cnki.com.cn/Article/CJFDTOTAL-GSWX202103011.htm

    Yao Fulong, Ma Chunmei, Zhu Cheng, et al. Relationship between surface pollen and vegetation on the northern slope of west Tianshan Mountains, China[J]. Acta Palaeontologica Sinica, 2021, 60 (3): 471-482. https://www.cnki.com.cn/Article/CJFDTOTAL-GSWX202103011.htm

    [42]

    曹现勇, 田芳, 李凯, 等. 青藏高原东部常见植物孢粉形态图集(2020-2025)[M]. 国家青藏高原科学数据中心, 2020, doi: 10.11888/Paleoenv.tpdc.270735.

    Cao Xianyong, Tian Fang, Li Kai, et al. Atlas of pollen and spores for common plants from the east Tibetan Plateau(2020-2025)[M]. National Tibetan Plateau Data Center, 2020, doi: 10.11888/Paleoenv.tpdc.270735.

    [43]

    唐领余, 毛礼米, 舒军武, 等. 中国第四纪孢粉图鉴[M]. 北京: 科学出版社, 2016.

    Tang Lingyu, Mao Limi, Qin Junwu, et al. An Illustrated Handbook of Quaternary Pollen and Spores in China[M]. Beijing: Science Press, 2016.

    [44]

    王伏雄, 钱南芬, 张玉, 等. 中国植物花粉形态[M]. 第2版. 北京: 科学出版社, 1995.

    Wang Fuxiong, Qian Nanfen, Zhang Yu, et al. Pollen Flora of China[M]. Beijing: Science Press, 1995.

    [45]

    舒军武, 黄小忠, 徐德克, 等. 新版Tilia软件: 中文指南和使用技巧[J]. 古生物学报, 2018, 57 (2): 260-272. https://www.cnki.com.cn/Article/CJFDTOTAL-GSWX201802012.htm

    Shu Junwu, Huang Xiaozhong, Xu Deke, et al. The latest Tilia Software: Chinese manual and practise skills[J]. Acta Palaeontologica Sinica, 2018, 57 (2): 260-272. https://www.cnki.com.cn/Article/CJFDTOTAL-GSWX201802012.htm

    [46]

    Prentice I C. Multidimensional scaling as a research tool in Quaternary palynology: A review of theory and methods[J]. Review of Palaeobotany and Palynology, 1980, 31: 71-104. doi:10.1016/0034-6667(80)90023-8.

    [47]

    Lepš J, Šmilauer P. Multivariate Analysis of Ecological Data Using CANOCO[M]. Cambridge: Cambridge University Press, 2003.

    [48]

    李婷婷, 张钦弟, 段晓梅, 等. 稀有种处理对RDA排序结果影响的比较研究[J]. 广西植物, 2015, 35 (4): 539-545, 585. https://www.cnki.com.cn/Article/CJFDTOTAL-GXZW201504015.htm

    Li Tingting, Zhang Qindi, Duan Xiaomei, et al. Comparative study concerning the effects of rare species treatments on RDA ordination[J]. Guihaia, 2015, 35 (4): 539-545, 585. https://www.cnki.com.cn/Article/CJFDTOTAL-GXZW201504015.htm

    [49]

    Ter Braak C J F, Prentice I C. A theory of gradient analysis[J]. Advances in Ecological Research, 1988, 18 (C): 271-317.

    [50]

    Hsieh T C, Ma K H, Chao A. iNEXT: An R package for rarefaction and extrapolation of species diversity(Hill numbers)[J]. Methods in Ecology and Evolution, 2016, 7 (12): 1451-1456.

    [51]

    Felde V A, Peglar S M, Bjune A E, et al. Modern pollen-plant richness and diversity relationships exist along a vegetational gradient in southern Norway[J]. The Holocene, 2016, 26 (2): 163-175.

    [52]

    周浙昆. 中国栎属的起源演化及其扩散[J]. 云南植物研究, 1992, 14 (3): 227-236. https://www.cnki.com.cn/Article/CJFDTOTAL-YOKE199203000.htm

    Zhou Zhekun. The origin and evolution of the genus Quercus in China and its spread[J]. Acta Botanica Yunnanica, 1992, 14 (3): 227-236. https://www.cnki.com.cn/Article/CJFDTOTAL-YOKE199203000.htm

    [53]

    张德怀, 孙爱芝, 韩晓丽, 等. 雅鲁藏布江中游松属、冷杉属表土花粉对海拔的指示意义[J]. 山地学报, 2012, 30 (4): 478-483. https://www.cnki.com.cn/Article/CJFDTOTAL-SDYA201204016.htm

    Zhang Dehuai, Sun Aizhi, Han Xiaoli, et al. The instruction significance to altitudes of surface Pinus and Abies pollen from the middle reaches of Yarlung Zangbo River[J]. Mountain Research, 2012, 30 (4): 478-483. https://www.cnki.com.cn/Article/CJFDTOTAL-SDYA201204016.htm

    [54]

    李海宁. 太白山北坡植物物种多样性及其垂直分布格局研究[D]. 西安: 陕西师范大学硕士论文, 2007: 38-57.

    Li Haining. Studies on the Species Diversity and Vertical Distribution Pattern on Northern Slopes of Mt. Taibai[D]. Xi'an: The Master's Thesis of Shaanxi Normal University, 2007: 38-57.

    [55]

    闫双喜, 李永华, 位凤宇. 中国木兰科植物的地理分布[J]. 植物科学学报, 2008, 26 (4): 379-384. https://www.cnki.com.cn/Article/CJFDTOTAL-WZXY200804011.htm

    Yan Shuangxi, Li Yonghua, Wei Fengyu. Geographical distribution of Magnoliophyta in China[J]. Plant Science Journal, 2008, 26 (4): 379-384. https://www.cnki.com.cn/Article/CJFDTOTAL-WZXY200804011.htm

    [56]

    唐领余, 沈才明, 吕厚远, 等. 青藏高原第四纪孢粉研究五十年[J]. 中国科学: 地球科学, 2021, 51 (12): 2015-2034. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK202112001.htm

    Tang Lingyu, Shen Caiming, Lü Houyuan, et al. Fifty years of Quaternary spore powder research on the Tibetan Plateau[J]. Science China: Earth Sciences, 2021, 51 (12): 2015-2034. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK202112001.htm

    [57]

    谷安琳. 西藏莎草科主要牧草的生态地理分布和饲用评价[J]. 中国草地, 1989, (4): 26-30. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGCD198904007.htm

    Gu Anlin. Ecological geographic distribution and feeding evaluation of main herbage of sedge family in Tibet[J]. Grassland of China, 1989, (4): 26-30. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGCD198904007.htm

    [58]

    Herzschuh U, Birks H J B, Mischke S, et al. A modern pollen-climate calibration set based on lake sediments from the Tibetan Plateau and its application to a Late Quaternary pollen record from the Qilian Mountains[J]. Journal of Biogeography, 2010, 37 (4): 752-766.

    [59]

    王建林, 栾运芳, 大次卓嘎, 等. 中国十字花科(Cruciferae)的地理分布[J]. 植物资源与环境学报, 2006, 15 (3): 7-11. https://www.cnki.com.cn/Article/CJFDTOTAL-ZWZY200603001.htm

    Wang Jianlin, Luan Yunfang, Daci Zhuoga, et al. Geographical distribution of Cruciferae in China[J]. Journal of Plant Resources and Environment, 2006, 15 (3): 7-11. https://www.cnki.com.cn/Article/CJFDTOTAL-ZWZY200603001.htm

  • 加载中

(3)

(1)

计量
  • 文章访问数:  1733
  • PDF下载数:  130
  • 施引文献:  0
出版历程
收稿日期:  2022-04-22
修回日期:  2022-07-12
刊出日期:  2023-01-30

目录