红原泥炭记录的晚冰期以来若尔盖地区粉尘通量变率及其气候影响

汪洪娇, 曾蒙秀, 彭海军, 朱诚, 李越, 白勇勇, 曾巧, 孙静茹. 红原泥炭记录的晚冰期以来若尔盖地区粉尘通量变率及其气候影响[J]. 第四纪研究, 2023, 43(1): 57-73. doi: 10.11928/j.issn.1001-7410.2023.01.05
引用本文: 汪洪娇, 曾蒙秀, 彭海军, 朱诚, 李越, 白勇勇, 曾巧, 孙静茹. 红原泥炭记录的晚冰期以来若尔盖地区粉尘通量变率及其气候影响[J]. 第四纪研究, 2023, 43(1): 57-73. doi: 10.11928/j.issn.1001-7410.2023.01.05
汪洪娇, 曾蒙秀, 彭海军, 朱诚, 李越, 白勇勇, 曾巧, 孙静茹. 红原泥炭记录的晚冰期以来若尔盖地区粉尘通量变率及其气候影响[J]. 第四纪研究, 2023, 43(1): 57-73. doi: 10.11928/j.issn.1001-7410.2023.01.05 WANG Hongjiao, ZENG Mengxiu, PENG Haijun, ZHU Cheng, LI Yue, BAI Yongyong, ZENG Qiao, SUN Jingru. Significance of climate conditions in the variability of eolian dust deposition since the last deglaciation in the Zoigê region recorded by the Hongyuan peat[J]. Quaternary Sciences, 2023, 43(1): 57-73. doi: 10.11928/j.issn.1001-7410.2023.01.05
Citation: WANG Hongjiao, ZENG Mengxiu, PENG Haijun, ZHU Cheng, LI Yue, BAI Yongyong, ZENG Qiao, SUN Jingru. Significance of climate conditions in the variability of eolian dust deposition since the last deglaciation in the Zoigê region recorded by the Hongyuan peat[J]. Quaternary Sciences, 2023, 43(1): 57-73. doi: 10.11928/j.issn.1001-7410.2023.01.05

红原泥炭记录的晚冰期以来若尔盖地区粉尘通量变率及其气候影响

  • 基金项目:

    贵州省科技计划项目(批准号: 黔科合基础[2020]1Y193)、国家自然科学基金项目(批准号: 42007400)和浙江省自然科学基金项目(批准号: LY22D020002)共同资助

详细信息

Significance of climate conditions in the variability of eolian dust deposition since the last deglaciation in the Zoigê region recorded by the Hongyuan peat

More Information
  • 由于高分辨率的气候重建记录, 尤其是粉尘通量重建结果仍然较少, 晚冰期以来东亚地区的气候突变机制存在很多争论。本研究对青藏高原东北部若尔盖红原泥炭HY2014剖面(深度450cm)样品的灰分含量及其粒度组成和K、Ti、Zr、Rb、Sr、V等元素含量进行高分辨率测定, 基于AMS14C测年结果, 重建了晚冰期以来该地区粉尘通量的变化动态, 并结合过去的研究结果综合探讨粉尘通量的影响机制。结果表明: 1)红原泥炭中的Ti、V、Sr、EFZr、EFRb、EFK等元素主要为风成输入, 可辅助粉尘通量来共同反映研究区大气粉尘沉积的变化历史。2)14000~11600cal.a B.P., 红原地区粉尘通量总体偏高, 其中14000~12800cal.a B.P.期间由于红原地区发生特大古洪水事件使大气粉尘通量数值明显增加, 而12800~11600cal.a B.P.期间气候冷干, 强劲的东亚冬季风和北半球西风急流将裸露的松散沉积物搬运沉积到红原泥炭地中, 导致红原大气粉尘通量增加; 11600~3100cal.a B.P.粉尘通量低, 其中在11600~6400cal.a B.P.期间波动较为明显, 而在6400~3100cal.a B.P.粉尘通量波动更为稳定。早中全新世气候总体暖湿, 受东亚冬季风和北半球西风急流影响较小且植被覆盖度较高, 粉尘通量总体较低; 3100cal.a B.P.以来东亚冬季风增强, 红原地区粉尘通量再次升高。3)红原泥炭粉尘沉积通量记录了新仙女木事件, 还清晰地记录了此后发生的7次粉尘增强事件, 这在中国西北和北部的其他记录中也多有体现。粉尘增强事件发生时, 东亚冬季风增强, 粉尘源区干旱化, 植被覆盖面积减小, 粉尘释放增多, 红原泥炭中粉尘含量升高。

  • 加载中
  • 图 1 

    研究区及文中涉及到的部分研究采样点所处的地理位置

    Figure 1. 

    Location of the study area and other reference sites.

    图 2 

    HY2014剖面样品基于传统XRF和便携式光谱仪测试数据在整个沉积序列的变化

    Figure 2. 

    Variations of trace element concentration measured by the traditional X-ray fluorescence spectrometer and portable spectrometer in the whole sedimentary sequence of HY2014 profile

    图 3 

    HY2014剖面地球化学元素、灰分与粒度的相关性分析

    Figure 3. 

    Correlation analysis of geochemical elements, ash content and grain size composition in HY2014 profile

    图 4 

    HY2014剖面的现场照片、各深度地层性质以及地球化学元素、灰分、粒度随时间变化特征

    Figure 4. 

    Field photos, stratigraphic properties and the variation characteristics of geochemical elements, ash content and grain size composition with the timeseries recorded in HY2014 profile

    图 5 

    HY2014剖面记录的大气粉尘通量历史变化

    Figure 5. 

    Historical variation of atmospheric dust flux recorded by HY2014 profile. The grey shades represent the dust enhancement event

    图 6 

    HY2014剖面粉尘变化与晚冰期以来其他记录的比较

    Figure 6. 

    Comparison of the dust flux recorded in HY2014 profile with other paleoclimate records since the last deglaciation.

    图 7 

    HY2014剖面晚冰期以来气候代用指标变化特征及其与其他古气候记录对比

    Figure 7. 

    Comparison of the climate proxies in HY2014 profile with other paleoclimate records since the last deglacial.

    表 1 

    HY2014剖面元素因子得分系数矩阵

    Table 1. 

    Element factor score coefficient matrix of the HY2014 profile

    评价指标 F1 F2 F3
    S -0.342 0.694 0.531
    K 0.857 -0.018 0.278
    Ca 0.167 0.543 -0.693
    Ti 0.900 -0.067 -0.031
    V 0.843 0.042 0.098
    Mn -0.045 0.851 -0.154
    Fe 0.313 0.705 -0.493
    Zn -0.174 0.360 0.404
    As 0.098 0.712 0.371
    Rb 0.900 -0.045 0.006
    Sr 0.836 0.231 0.283
    Zr 0.905 -0.171 -0.063
    下载: 导出CSV
  • [1]

    Kohfeld K E, Harrison S P. DIRTMAP: The geological record of dust[J]. Earth-Science Reviews, 2001, 54 (1): 81-114.

    [2]

    Ferrat M, Weiss D J, Spiro B, et al. The inorganic geochemistry of a peat deposit on the eastern Qinghai-Tibetan Plateau and insights into changing atmospheric circulation in Central Asia during the Holocene[J]. Geochimica et Cosmochimica Acta, 2012, 91: 7-31. doi: 10.1016/j.gca.2012.05.028.

    [3]

    Björckl S, Clemmensen L B. Aeolian sediment in raised bog deposits, Halland, SW Sweden: A new proxy record of Holocene winter storminess variation in Southern Scandinavia?[J]. The Holocene, 2004, 14 (5): 677-688. doi: 10.1191/0959683604hl746rp

    [4]

    Shotyk W, Weiss D, Kramers J D, et al. Geochemistry of the peat bog at Etang de la Gruère, Jura Mountains, Switzerland, and its record of atmospheric Pb and lithogenic trace metals(Sc, Ti, Y, Zr, and REE)since 12, 370 14C yr BP[J]. Geochimica et Cosmochimica Acta, 2001, 65 (14): 2337-2360. doi: 10.1016/S0016-7037(01)00586-5

    [5]

    Marx S K, Kamber B S, McGowan H A, et al. Palaeo-dust records: A window to understanding past environments[J]. Global and Planetary Change, 2018, 165: 13-43. doi: 10.1016/j.gloplacha.2018.03.001.

    [6]

    Prospero J M, Ginoux P, Torres O, et al. Environmental characterization of global sources of atmospheric soil dust identified with the NIMBUS 7 Total Ozone Mapping Spectrometer(TOMS)absorbing aerosol product[J]. Reviews of Geophysics, 2002, 40 (1): 1-31.

    [7]

    Bao K, Xing W, Yu X, et al. Recent atmospheric dust deposition in an ombrotrophic peat bog in Great Hinggan Mountain, Northeast China[J]. Science of the Total Environment, 2012, 431: 33-45. doi: 10.1016/j.scitotenv.2012.05.014.

    [8]

    乐秀琴, 吴海斌, 张文超, 等. 中国末次冰盛期以来泥炭发育与气候变化[J]. 第四纪研究, 2021, 41 (4): 1021-1030. http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2021.04.12

    Le Xiuqin, Wu Haibin, Zhang Wenchao, et al. Peatland initiation in China associated with climate changes since the Last Glacial Maximum[J]. Quaternary Sciences, 2021, 41 (4): 1021-1030. http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2021.04.12

    [9]

    李艳梅, 李鸿凯, 董彦民. 长白山老里克泥炭地过去2000年以来古水位定量重建[J]. 第四纪研究, 2020, 40 (5): 1170-1179. http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2020.05.07

    Li Yanmei, Li Hongkai, Dong Yanmin. Quantitative reconstruction of the water table changes during the last 2000 years from Laolike peatland, Changbai Mountains[J]. Quaternary Sciences, 2020, 40 (5): 1170-1179. http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2020.05.07

    [10]

    Le Roux G, Fagel N, De Vleeschouwer F, et al. Volcano-and climate-driven changes in atmospheric dust sources and fluxes since the Late Glacial in Central Europe[J]. Geology, 2012, 40 (4): 335-338. doi: 10.1130/G32586.1

    [11]

    Pratte S, Bao K, Sapkota A, et al. 14 kyr of atmospheric mineral dust deposition in north-eastern China: A record of palaeoclimatic and palaeoenvironmental changes in the Chinese dust source regions[J]. The Holocene, 2020, 30 (4): 492-506. doi: 10.1177/0959683619892661

    [12]

    Vanneste H, De Vleeschouwer F, Bertrand S, et al. Elevated dust deposition in Tierra del Fuego(Chile)resulting from Neoglacial Darwin Cordillera glacier fluctuations[J]. Journal of Quaternary Science, 2016, 31 (7): 713-722. doi: 10.1002/jqs.2896

    [13]

    李泉, 赵艳. 青藏高原东部若尔盖盆地泥炭发育记录的全新世气候突变[J]. 第四纪研究, 2019, 39 (6): 3-1313232. http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2019.06.01

    Li Quan, Zhao Yan. Abrupt climatic changes in the Holocene recorded by the history of peat formation in Zoigé Basin on the eastern Tibetan Plateau[J]. Quaternary Sciences, 2019, 39 (6): 1323-1332. http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2019.06.01

    [14]

    郭海春, 田怡苹, 魏士凯, 等. 我国全新世泥炭α纤维素稳定碳同位素记录的对比与分析[J]. 第四纪研究, 2020, 40 (5): 1136-1144. http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2020.05.04

    Guo Haichun, Tian Yiping, Wei Shikai, et al. Comparison and analyses of the Holocene peat α-cellulose stable carbon isotopic records from China[J]. Quaternary Sciences, 2020, 40 (5): 1136-1144. http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2020.05.04

    [15]

    鲍锟山, 杨婷, 肖湘, 等. 基于泥炭记录的过去150a东北山地大气粉尘沉降[J]. 地理学报, 2021, 76 (9): 2283-2296. https://www.cnki.com.cn/Article/CJFDTOTAL-DLXB202109018.htm

    Bao Kunshan, Yang Ting, Xiao Xiang, et al. Atmospheric dust deposition history over the past 150a recorded by mountain peatlands in Northeast China[J]. Acta Geographica Sinica, 2021, 76 (9): 2283-2296. https://www.cnki.com.cn/Article/CJFDTOTAL-DLXB202109018.htm

    [16]

    张晓燕, 张春霞, 李佩. 青藏高原东缘若尔盖盆地表层沉积物粘土矿物组成及其环境意义探讨[J]. 第四纪研究, 2022, 42 (2): 435-448. http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2022.02.09

    Zhang Xiaoyan, Zhang Chunxia, Li Pei. Clay mineral composition and its enviromental significance of the surface sediment in the Zoigê Basin on the eastern Tibetan Plateau[J]. Quaternary Sciences, 2022, 42 (2): 435-448. http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2022.02.09

    [17]

    Sapkota A, Cheburkin A K, Bonani G, et al. Six millennia of atmospheric dust deposition in southern South America(Isla Navarino, Chile)[J]. The Holocene, 2007, 17 (5): 561-572. doi: 10.1177/0959683607078981

    [18]

    刘英英. 全新世北疆泥炭沉积记录的大气粉尘变化[D]. 兰州: 兰州大学博士学位论文, 2016: 61-85.

    Liu Yingying. Holocene Dust Variability Inferred from Peat Deposits in Northern Xinjiang[D]. Lanzhou: The PhD Thesis of Lanzhou University, 2016: 61-85.

    [19]

    Peng H, Bao K, Yuan L, et al. Abrupt climate variability since the last deglaciation based on a high-resolution peat dust deposition record from Southwest China[J]. Quaternary Science Reviews, 2021, 252: 106749-106749. doi: 10.1016/j.quascirev.2020.106749.

    [20]

    Fiałkiewicz-Kozieł B, Bao K, Smieja-Król B. Geographical drivers of geochemical and mineralogical evolution of Motianling peatland(Northeast China)exposed to different sources of rare earth elements and Pb, Nd, and Sr isotopes[J]. Science of the Total Environment, 2022, 807 (1): 150481-150481.

    [21]

    Xiao H, Cheng S, Mao X, et al. Characteristics of peat humification, magnetic susceptibility and trace elements of Hani peatland, Northeastern China: Paleoclimatic implications[J]. Atmospheric Science Letters, 2017, 18 (3): 140-150. doi: 10.1002/asl.736

    [22]

    Shi G, Yan H, Zhang W, et al. The impacts of volcanic eruptions and climate changes on the development of Hani peatland in Northeastern China during the Holocene[J]. Journal of Asian Earth Sciences, 2021, 210: 104691-104691. doi: 10.1016/j.jseaes.2021.104691.

    [23]

    Tang S, Huang Z, Liu J, et al. Atmospheric mercury deposition recorded in an ombrotrophic peat core from Xiaoxing'an Mountain, Northeast China[J]. Environmental Research, 2012, 118: 145-148. doi: 10.1016/j.envres.2011.12.009.

    [24]

    Chen S, Liu J, Wang X, et al. Holocene dust storm variations over Northern China: Transition from a natural forcing to an anthropogenic forcing[J]. Science Bulletin, 2021, 66 (24): 2516-2527. doi: 10.1016/j.scib.2021.08.008

    [25]

    Ferrat M, Weiss D J, Dong S, et al. Lead atmospheric deposition rates and isotopic trends in Asian dust during the last 9.5 kyr recorded in an ombrotrophic peat bog on the eastern Qinghai-Tibetan Plateau[J]. Geochimica et Cosmochimica Acta, 2012, 82: 4-22. doi: 10.1016/j.gca.2010.10.031.

    [26]

    Yu X, Zhou W, Liu X, et al. Peat records of human impacts on the atmosphere in Northwest China during the late Neolithic and Bronze Ages[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2010, 286 (1-2): 17-22. doi: 10.1016/j.palaeo.2009.11.034

    [27]

    杨涵菲, 赵艳, 崔巧玉, 等. 基于XRF岩芯扫描的Rb/Sr比值的古气候意义探讨——以青藏高原东部若尔盖盆地为例[J]. 中国科学: 地球科学, 2021, 51 (1): 73-91. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK202101007.htm

    Yang Hanfei, Zhao Yan, Cui Qiaoyu, et al. Paleoclimatic indication of X-ray fluorescence core-scanned Rb/Sr ratios: A case study in the Zoigê Basin in the eastern Tibetan Plateau[J]. Science China: Earth Sciences, 2021, 51 (1): 73-91. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK202101007.htm

    [28]

    曾蒙秀. 四川西部晚冰期以来植被和气候变化及其对人类活动的影响[D]. 南京: 南京大学博士学位论文, 2017: 1-186.

    Zeng Mengxiu. The Variation of Vegetation and Climate and Its Impact on Human Activities from Late Deglacial Period in Western Sichuan, China[D]. Nanjing: The PhD Thesis of Nanjing University, 2017: 1-186.

    [29]

    王燕, 赵志中, 乔彦松, 等. 川北若尔盖高原红原泥炭剖面孢粉记录的晚冰期以来古气候古环境的演变[J]. 地质通报, 2006, 25 (7): 827-832. doi: 10.3969/j.issn.1671-2552.2006.07.009

    Wang Yan, Zhao Zhizhong, Qiao Yansong, et al. Paleoclimatic and paleoenvironmental evolution since the Late Glacial epoch as recorded by sporopollen from the Hongyuan peat section on the Zoigê Plateau, Northern Sichuan, China[J]. Geologcal Bulletin of China, 2006, 25 (7): 827-832. doi: 10.3969/j.issn.1671-2552.2006.07.009

    [30]

    周卫健, 刘钊, 王浩, 等. 13500年以来青藏高原红原泥炭沉积的孢粉记录[J]. 地球环境学报, 2011, 2 (5): 605-612. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHJ201105003.htm

    Zhou Weijian, Liu Zhao, Wang Hao, et al. The pollen record from the Hongyuan peatland in the Tibetan Plateau since 13500 year[J]. Journal of Earth Environment, 2011, 2 (5): 605-612. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHJ201105003.htm

    [31]

    An C B, Zhao J, Tao S, et al. Dust variation recorded by lacustrine sediments from arid Central Asia since~15 cal ka BP and its implication for atmospheric circulation[J]. Quaternary Research, 2011, 75 (3): 566-573. doi: 10.1016/j.yqres.2010.12.015

    [32]

    An Z, Colman S M, Zhou W, et al. Interplay between the Westerlies and Asian monsoon recorded in Lake Qinghai sediments since 32ka[J]. Scientific Reports, 2012, 2 (1): 619-619. doi: 10.1038/srep00619

    [33]

    Li Y, Morrill C. A Holocene East Asian winter monsoon record at the southern edge of the Gobi Desert and its comparison with a transient simulation[J]. Climate Dynamics, 2015, 45 (5): 1219-1234.

    [34]

    Thompson L G, Mosley-Thompson E, Davis M E, et al. Holocene-Late Pleistocene climatic ice core records from Qinghai-Tibetan Plateau[J]. Science, 1989, 246: 474-477. doi: 10.1126/science.246.4929.474.

    [35]

    Xu B, Wang L, Gu Z, et al. Decoupling of climatic drying and Asian dust export during the Holocene[J]. Journal of Geophysical Research: Atmospheres, 2018, 123 (2): 915-928. doi: 10.1002/2017JD027483

    [36]

    Li N, Chambers F M, Yang J, et al. Records of East Asian monsoon activities in Northeastern China since 15.6ka, based on grain size analysis of peaty sediments in the Changbai Mountains[J]. Quaternary International, 2017, 447: 158-169. doi: 10.1016/j.quaint.2017.03.064.

    [37]

    Compo G P, Whitaker J S, Sardeshmukh P D. Feasibility of a 100-year reanalysis using only surface pressure data[J]. Bulletin of the American Meteorological Society, 2006, 87 (2): 175-190. doi: 10.1175/BAMS-87-2-175

    [38]

    Blaauw M, Christen J A. Flexible paleoclimate age-depth models using an autoregressive gamma process[J]. Bayesian Analysis, 2011, 6 (3): 457-474. doi: 10.1214/ba/1339616472

    [39]

    Bao K, Wang G, Jia L, et al. Anthropogenic impacts in the Changbai Mountain region of NE China over the last 150 years: Geochemical records of peat and altitude effects[J]. Environmental Science and Pollution Research, 2019, 26 (8): 7512-7524. doi: 10.1007/s11356-019-04138-w

    [40]

    Ao H, Liebrand D, Dekkers M J, et al. Eccentricity-paced monsoon variability on the northeastern Tibetan Plateau in the Late Oligocene high CO2 world[J]. Science Advances, 2021, 7 (51): 2318-2318. doi: 10.1126/sciadv.abk2318

    [41]

    Abella S R, Zimmer B W. Estimating organic carbon from loss-on-ignition in northern Arizona forest soils[J]. Soil Science Society of America Journal, 2007, 71 (2): 545-550. doi: 10.2136/sssaj2006.0136

    [42]

    Shotyk W, Krachler M, Martinez-Cortizas A, et al. A peat bog record of natural, pre-anthropogenic enrichments of trace elements in atmospheric aerosols since 12370 14C yr BP, and their variation with Holocene climate change[J]. Earth and Planetary Science Letters, 2002, 199 (1): 21-37.

    [43]

    Nolting R F, Ramkema A, Everaarts J M. The geochemistry of Cu, Cd, Zn, Ni and Pb in sediment cores from the continental slope of the Banc d'Arguin(Mauritania)[J]. Continental Shelf Research, 1999, 19 (5): 665-691. doi: 10.1016/S0278-4343(98)00109-5

    [44]

    张华, 宋传中. 大别山北麓黄土-古土壤地球化学元素特征及富集因子法物源研究[J]. 地质科技情报, 2013, 32 (3): 87-93. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201303014.htm

    Zhang Hua, Song Chuanzhong. Geochemical characteristics of loess-palaeosols from the northern slope of Dabie Mountain and research of its provenance in the enrichment factor way[J]. Bulletin of Geological Science and Technology, 2013, 32 (3): 87-93. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201303014.htm

    [45]

    柴岫. 泥炭地学[M]. 北京: 地质出版社, 1990: 1-256.

    Chai Xiu. Peatland[M]. Beijing: Geological Publishing House, 1990: 1-256.

    [46]

    William S. Peat bog archives of atmospheric metal deposition: Geochemical evaluation of peat profiles, natural variations in metal concentrations, and metal enrichment factors[J]. Environmental Reviews, 1996, 4 (2): 149-183. doi: 10.1139/a96-010

    [47]

    Large D J, Spiro B, Ferrat M, et al. The influence of climate, hydrology and permafrost on Holocene peat accumulation at 3500m on the eastern Qinghai-Tibetan Plateau[J]. Quaternary Science Reviews, 2009, 28 (27): 3303-3314.

    [48]

    于学峰, 刘钊. 红原泥炭颗粒物表面形态与矿物组成研究[J]. 地球环境学报, 2010, 1 (2): 122-125. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHJ201002006.htm

    Yu Xuefeng, Liu Zhao. Surface texture and mineralogical characters of the peat[J]. Journal of Earth Environment, 2010, 1 (2): 122-125. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHJ201002006.htm

    [49]

    Nesbitt H W, Markovics G. Weathering of granodioritic crust, long-term storage of elements in weathering profiles, and petrogenesis of siliciclastic sediments[J]. Geochimica et Cosmochimica Acta, 1997, 61 (8): 1653-1670. doi: 10.1016/S0016-7037(97)00031-8

    [50]

    Shotyk W. Review of the inorganic geochemistry of peats and peatland waters[J]. Earth-Science Reviews, 1988, 25 (2): 95-176. doi: 10.1016/0012-8252(88)90067-0

    [51]

    Yancheva G, Nowaczyk N R, Mingram J, et al. Influence of the intertropical convergence zone on the East Asian monsoon[J]. Nature, 2007, 445 (7123): 74-77. doi: 10.1038/nature05431

    [52]

    Shotyk W, Goodsite M E, Roos-Barraclough F, et al. Anthropogenic contributions to atmospheric Hg, Pb and As accumulation recorded by peat cores from southern Greenland and Denmark dated using the 14C "bomb pulse curve"[J]. Geochimica et Cosmochimica Acta, 2003, 67 (21): 3991-4011. doi: 10.1016/S0016-7037(03)00409-5

    [53]

    杨倩楠, 赵红艳, 李永锋, 等. 老白山泥炭沼泽元素地球化学特征及其记录的大气沉降[J]. 湿地科学, 2015, 13 (4): 400-409. https://www.cnki.com.cn/Article/CJFDTOTAL-KXSD201504003.htm

    Yang Qiannan, Zhao Hongyan, Li Yongfeng, et al. Geochemical characteristics element and atmospheric deposition recorded by Laobaishan Bog[J]. Wetland Science, 2015, 13 (4): 400-409. https://www.cnki.com.cn/Article/CJFDTOTAL-KXSD201504003.htm

    [54]

    刘英俊. 元素地球化学[M]. 北京: 科学出版社, 1984: 1-281.

    Liu Yingjun. Elemental Geochemistry[M]. Beijing: Science Press, 1984: 1-281.

    [55]

    黄明. 浅析Rb/Sr比值在第四纪古气候及古环境研究中的应用[J]. 科协论坛(下半月), 2012, (3): 132-133. doi: CNKI:SUN:KXLT.0.2012-03-069. https://www.cnki.com.cn/Article/CJFDTOTAL-KXLT201203069.htm

    Huang Ming. A brief analysis of the application of Rb/Sr ratio in Quaternary paleoclimate and paleoenvironmental research[J]. Science & Technology Association Forum(Second half of the Month), 2012, (3): 132-133. doi: CNKI:SUN:KXLT.0.2012-03-069. https://www.cnki.com.cn/Article/CJFDTOTAL-KXLT201203069.htm

    [56]

    陈骏, 季峻峰, 仇纲, 等. 陕西洛川黄土化学风化程度的地球化学研究[J]. 中国科学(D辑), 1997, 27 (6): 531-536. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK199706009.htm

    Chen Jun, Ji Junfeng, Qiu Gang, et al. Geochemical study on the degree of chemical weathering of loess in Luochuan, Shaanxi[J]. Science in China(Series D), 1997, 27 (6): 531-536. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK199706009.htm

    [57]

    Steinmann P, Shotyk W. Geochemistry, mineralogy, and geochemical mass balance on major elements in two peat bog profiles(Jura Mountains, Switzerland)[J]. Chemical Geology, 1997, 138 (1): 25-53.

    [58]

    庞奖励, 黄春长, 张占平. 陕西岐山黄土剖面Rb、Sr组成与高分辨率气候变化[J]. 沉积学报, 2001, 19 (4): 637-641.

    Pang Jiangli, Huang Chunchang, Zhang Zhanping. Rb, Sr elements and high resolution climatic records in the loess-paleosol profile at Qishan, Shaanxi[J]. Acta Sedimentologica Sinica, 2001, 19 (4): 637-641.

    [59]

    Ren X, Nie J, Saylor J E, et al. Provenance control on chemical weathering index of fluvio-lacustrine sediments: Evidence from the Qaidam Basin, NE Tibetan Plateau[J]. Geochemistry, Geophysics, Geosystems, 2019, 20 (7): 3216-3224.

    [60]

    曾艳, 陈敬安, 朱正杰, 等. 湖泊沉积物Rb/Sr比值在古气候/古环境研究中的应用与展望[J]. 地球科学进展, 2011, 26 (8): 805-810. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201108002.htm

    Zeng Yan, Chen Jing'an, Zhu Zhengjie, et al. Advance and porspective of Rb/Sr ratios in lake sediments as an index of paleoclimate/paleoenvironment[J]. Advances in Earth Science, 2011, 26 (8): 805-810. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201108002.htm

    [61]

    冯东, 陈多福. 黑海西北部冷泉碳酸盐岩的沉积岩石学特征及氧化还原条件的稀土元素地球化学示踪[J]. 现代地质, 2008, 22 (3): 390-396. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ200803007.htm

    Feng Dong, Chen Duofu. Petrographic characterization and rare earth elements as geochemical tracers for redox condition of seep carbonates from northwestern Black Sea[J]. Geoscience, 2008, 22 (3): 390-396. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ200803007.htm

    [62]

    Krachler M, Mohl C, Emons H, et al. Atmospheric deposition of V, Cr, and Ni since the Late Glacial: Effects of climatic cycles, human impacts, and comparison with crustal abundances[J]. Environmental Science & Technology, 2003, 37 (12): 2658-2667.

    [63]

    强明瑞, 鲁瑞洁, 张家武, 等. 柴达木盆地苏干湖表层沉积与尘暴事件——元素示踪的初步结果[J]. 湖泊科学, 2006, 18 (6): 590-596. https://www.cnki.com.cn/Article/CJFDTOTAL-FLKX200606006.htm

    Qiang Mingrui, Lu Ruijie, Zhang Jiawu, et al. Surface sediments of Lake Sugan and dust storm in the northern Qaidam Basin, China: Preliminary results of elemental tracers[J]. Journal of Lake Sciences, 2006, 18 (6): 590-596. https://www.cnki.com.cn/Article/CJFDTOTAL-FLKX200606006.htm

    [64]

    Derbyshire E. Loess, and the dust indicators and records of terrestrial and marine palaeoenvironments(DIRTMAP)database[J]. Quaternary Science Reviews, 2003, 22 (18): 1813-1819.

    [65]

    陈海涛, 孔凡彪, 徐树建, 等. 庙岛群岛晚更新世以来黄土粒度端元揭示的粉尘堆积过程[J]. 第四纪研究, 2021, 41 (5): 1306-1316. http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2021.05.07

    Chen Haitao, Kong Fanbiao, Xu Shujian, et al. Dust accumulation process indicated by grain size end-members of the coastal loess since the Late Pleistocene in Miaodao Islands of Shandong Province[J]. Quaternary Sciences, 2021, 41 (5): 1306-1316. http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2021.05.07

    [66]

    于学峰, 周卫健, 刘晓清, 等. 青藏高原东部全新世泥炭灰分的粒度特征及其古气候意义[J]. 沉积学报, 2006, 24 (6): 864-869 https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB200606011.htm

    Yu Xuefeng, Zhou Weijian, Liu Xiaoqing, et al. Grain size characteristics of the Holocene peat sediment in eastern Tibetan Plateau and its paleoclimatic significance[J]. Acta Sedimentologica Sinica, 2006, 24 (6): 864-869. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB200606011.htm

    [67]

    Stauch G. A conceptual model for the interpretation of aeolian sediments from a semiarid high-mountain environment since the late glacial[J]. Quaternary Research, 2019, 91 (1): 24-34.

    [68]

    Lu H, Yi S, Xu Z, et al. Chinese deserts and sand fields in Last Glacial Maximum and Holocene Optimum[J]. Chinese Science Bulletin, 2013, 58 (23): 2775-2783.

    [69]

    范育新, 张青松, 蔡青松, 等. 光释光年代学对腾格里沙漠化机制及风沙物源的指示[J]. 第四纪研究, 2022, 42 (2): 350-367. http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2022.02.03

    Fan Yuxin, Zhang Qingsong, Cai Qingsong, et al. OSL chronology of sediments in the Tengger Sandy Desert and its indication to aeolian sand source and desertification mechanism[J]. Quaternary Sciences, 2022, 42 (2): 350-367. http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2022.02.03

    [70]

    胡梦珺, 李娜娜, 张亚云, 等. 近32ka以来青海湖古风成砂-古土壤序列色度参数变化特征及环境演变[J]. 第四纪研究, 2020, 40 (5): 1105-1117. http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2020.05.02

    Hu Mengjun, Li Nana, Zhang Yayun, et al. Variation characteristics of chromaticity parameters and environmental evolution of aeolian sand-paleosol sequence in Qinghai Lake during the past 32ka[J]. Quaternary Sciences, 2020, 40 (5): 1105-1117. http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2020.05.02

    [71]

    Yan T, Zhao C, Yan H, et al. Elevational differences in Holocene thermal maximum revealed by quantitative temperature reconstructions at~30°N on eastern Tibetan Plateau[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2021, 570: 110364. doi: 10.1016/j.palaeo.2021.110364.

    [72]

    Qiang M, Liu Y, Jin Y, et al. Holocene record of eolian activity from Genggahai Lake, northeastern Qinghai-Tibetan Plateau, China[J]. Geophysical Research Letters, 2014, 41 (2): 589-595.

    [73]

    Gao Y, Xiong K, Quan M, et al. Holocene climate dynamics derived from pollen record of Jiulongchi wetland in Fanjing Mountain, Southwest China[J]. Quaternary International, 2019, 513: 1-7. doi: 10.1016/j.quaint.2019.01.009.

    [74]

    杨欢. 黔西南11.4-3.5ka BP植被和气候演化的泥炭记录[D]. 金华: 浙江师范大学硕士学位论文, 2021: 45-66.

    Yang Huan. 11.4-3.5ka BP Vegetation and Climate Dynamics Derived from A Peat Record in The Southwest of Guizhou Province[D]. Jinhua: The Master's Thesis of Zhejiang Normal University, 2021: 45-66.

    [75]

    Zhu J, Mingram J, Brauer A. Early Holocene aeolian dust accumulation in Northeast China recorded in varved sediments from Lake Sihailongwan[J]. Quaternary International, 2013, 290: 299-312. doi: 10.1016/j.quaint.2012.10.057.

    [76]

    Rea D K, Leinen M, Janecek T R. Geologic approach to the long-term history of atmospheric circulation[J]. Science, 1985, 227 (4688): 721-725.

    [77]

    Mischke S, Zhang C, Börner A, et al. Late glacial and Holocene variation in aeolian sediment flux over the northeastern Tibetan Plateau recorded by laminated sediments of a saline meromictic lake[J]. Journal of Quaternary Science, 2010, 25 (2): 162-177.

    [78]

    Sun J, Zhang M, Liu T. Spatial and temporal characteristics of dust storms in China and its surrounding regions, 1960-1999: Relations to source area and climate[J]. Journal of Geophysical Research: Atmospheres, 2001, 106(D10): 10325-10333.

    [79]

    刘冰, 靳鹤龄, 孙忠, 等. 青藏高原东北部泥炭沉积粒度与元素记录的全新世千年尺度的气候变化[J]. 冰川冻土, 2013, 35 (3): 609-620. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT201303009.htm

    Liu Bing, Jin Heling, Sun Zhong, et al. Holocene millennial-scale climatic change recorded by grain size and chemical elements of peat deposits in Gonghe Basin, northeastern Tibetan Plateau[J]. Journal of Glaciology and Geocryology, 2013, 35 (3): 609-620. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT201303009.htm

    [80]

    Yu X, Zhou W, Liu Z, et al. Different patterns of changes in the Asian summer and winter monsoons on the eastern Tibetan Plateau during the Holocene[J]. The Holocene, 2011, 21 (7): 1031-1036.

    [81]

    Zhao Y, Yu Z, Chen F. Spatial and temporal patterns of Holocene vegetation and climate changes in arid and semi-arid China[J]. Quaternary International, 2009, 194 (1): 6-18.

    [82]

    程波, 陈发虎, 张家武. 共和盆地末次冰消期以来的植被和环境演变[J]. 地理学报, 2010, 65 (11): 1336-1344. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDE201301014.htm

    Cheng Bo, Chen Fahu, Zhang Jiawu. Palaeovegetational and palaeoenvironmental changes in Gonghe Basin since last deglaciation[J]. Acta Geographica Sinica, 2010, 65 (11): 1336-1344. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDE201301014.htm

    [83]

    杨怀仁. 第四纪地质[M]. 北京: 高等教育出版社, 1987: 61-63.

    Yang Huairen. Quaternary Geology[M]. Beijing: Higher Education Press, 1987: 61-63.

    [84]

    黄春长. 若尔盖盆地河流古洪水沉积及其对黄河水系演变问题的启示[J]. 地理学报, 2021, 76 (3): 612-625. https://www.cnki.com.cn/Article/CJFDTOTAL-DLXB202103010.htm

    Huang Chunchang. Palaeoflood deposits in the Zoigê Basin and the enlightening on the formation of the Yellow River drainage system on the Tibetan Plateau[J]. Acta Geographica Sinica, 2021, 76 (3): 612-625. https://www.cnki.com.cn/Article/CJFDTOTAL-DLXB202103010.htm

    [85]

    潘保田, 李吉均, 周尚哲. 黄河最上游发育历史初步研究[M]. 北京: 地震出版社, 1993: 17-21.

    Pan Baotian, Li Jijun, Zhou Shangzhe. A Preliminary Study on the Development History of the Uppermost Reaches of the Yellow River[M]. Beijing: Seismological Press, 1993: 17-21.

    [86]

    Liu X, Sun Y, Vandenberghe J, et al. Centennial- to millennial-scale monsoon changes since the last deglaciation linked to solar activities and North Atlantic cooling[J]. Climate of the Past, 2020, 16 (1): 315-324.

    [87]

    Zhang X, Jin L, Chen J, et al. Lagged response of summer precipitation to insolation forcing on the northeastern Tibetan Plateau during the Holocene[J]. Climate Dynamics, 2018, 50 (9): 3117-3129.

    [88]

    Dykoski C, Edwards R, Cheng H, et al. A high resolution, absolute-dated Holocene and deglacial Asian monsoon record from Dongge Cave, China[J]. Earth and Planetary Science Letters, 2005, 233 (1): 71-86.

    [89]

    Yang X, Wang X, Liu Z, et al. Initiation and variation of the dune fields in semi-arid China-With a special reference to the Hunshandake Sandy Land, Inner Mongolia[J]. Quaternary Science Reviews, 2013, 78: 369-380. doi: 10.1016/j.quascirev.2013.02.006.

    [90]

    Kang S, Du J, Wang N, et al. Early Holocene weakening and mid- to Late Holocene strengthening of the East Asian winter monsoon[J]. Geology, 2020, 48 (11): 1043-1047.

    [91]

    张海霞. 青藏高原东北部黄土记录的释光测年及末次冰消期以来气候变化研究[D]. 兰州: 兰州大学硕士学位论文, 2020: 39-46.

    Zhang Haixia. Paleoclimatic Changes Revealed by Luminescence Chronology and Proxy Indexes of Loess Records in the Northeastern Tibetan Plateau since the Last Deglaciation[D]. Lanzhou: The Master's Thesis of Lanzhou University, 2020: 39-46.

  • 加载中

(7)

(1)

计量
  • 文章访问数:  1606
  • PDF下载数:  111
  • 施引文献:  0
出版历程
收稿日期:  2022-04-05
修回日期:  2022-08-15
刊出日期:  2023-01-30

目录