哈萨克斯坦南部Shayan黄土粒度端元指示的14.4cal.ka B.P.以来的风尘历史

苏谌杰, 许仲林, 张东良, 刘奇, 刘建宗. 哈萨克斯坦南部Shayan黄土粒度端元指示的14.4cal.ka B.P.以来的风尘历史[J]. 第四纪研究, 2023, 43(1): 46-56. doi: 10.11928/j.issn.1001-7410.2023.01.04
引用本文: 苏谌杰, 许仲林, 张东良, 刘奇, 刘建宗. 哈萨克斯坦南部Shayan黄土粒度端元指示的14.4cal.ka B.P.以来的风尘历史[J]. 第四纪研究, 2023, 43(1): 46-56. doi: 10.11928/j.issn.1001-7410.2023.01.04
苏谌杰, 许仲林, 张东良, 刘奇, 刘建宗. 哈萨克斯坦南部Shayan黄土粒度端元指示的14.4cal.ka B.P.以来的风尘历史[J]. 第四纪研究, 2023, 43(1): 46-56. doi: 10.11928/j.issn.1001-7410.2023.01.04 SU Chenjie, XU Zhonglin, ZHANG Dongliang, LIU Qi, LIU Jianzong. Aeolian dust history since 14.4 cal. ka B.P. indicated by grain-size end members of Shayan loess in the southern Kazakhstan[J]. Quaternary Sciences, 2023, 43(1): 46-56. doi: 10.11928/j.issn.1001-7410.2023.01.04
Citation: SU Chenjie, XU Zhonglin, ZHANG Dongliang, LIU Qi, LIU Jianzong. Aeolian dust history since 14.4 cal. ka B.P. indicated by grain-size end members of Shayan loess in the southern Kazakhstan[J]. Quaternary Sciences, 2023, 43(1): 46-56. doi: 10.11928/j.issn.1001-7410.2023.01.04

哈萨克斯坦南部Shayan黄土粒度端元指示的14.4cal.ka B.P.以来的风尘历史

  • 基金项目:

    中国科学院青年创新促进会专项项目(批准号: 2022447)和国家自然科学基金面上项目(批准号: 41771234)共同资助

详细信息
    作者简介:

    苏谌杰, 男, 26岁, 硕士研究生, 第四纪地质与环境研究, E-mail: 214074515@stu.xju.edu.cn

    通讯作者: 张东良, E-mail: zhdl@ms.xjb.ac.cn
  • 中图分类号: P534.63+1;P512.2

Aeolian dust history since 14.4 cal. ka B.P. indicated by grain-size end members of Shayan loess in the southern Kazakhstan

More Information
  • 中亚干旱区不仅是全球主要的风尘源区之一, 也是气候变化的敏感区域之一。重建中亚干旱区风尘历史、解释其驱动机制对治理现代沙尘天气和改善人类生存环境至关重要。然而, 关于中亚干旱区风尘驱动机制的问题仍存在不同观点。本研究采用参数化粒度端元分析方法对哈萨克斯坦南部的Shayan黄土剖面(厚度约650cm)进行了分析。结果表明: 1)Shayan剖面沉积物粒度组分分为4个端元, EM1代表高空西风远距离搬运和以团聚体的形式被粗颗粒携带的粘土组分, EM2代表沉积时期大气粉尘的背景, 以浮尘的形式存在的细粉砂组分, EM3代表低空短距离搬运的近源粗粉砂组分, EM4代表较强风力条件下被搬运的局地砂粒组分; 2)EM3+EM4含量指示的风尘历史显示, 14.4cal.ka B.P.至早全新世阶段(14.4~8.2cal.ka B.P.)风力较强, 中全新世(8.2~4.2cal.ka B.P.)风力较弱, 晚全新世(4.2~0cal.ka B.P.)再次增强; 3)西伯利亚高压强度变化是中亚干旱区过去风尘活动变化的主要驱动力。

  • 加载中
  • 图 1 

    研究区概况图

    Figure 1. 

    Overview map of study area.

    图 2 

    SY剖面的深度-年代模型、粒度和沉积速率变化特征

    Figure 2. 

    Depth-age model and its characteristics of grain-size and sediment rates of SY profile

    图 3 

    SY剖面粒度频率分布曲线

    Figure 3. 

    Frequency distribution curves of grain size in the SY profile

    图 4 

    SY剖面端元的拟合特性和数量选取

    Figure 4. 

    Fitting characteristics and number selection of end members in the SY profile

    图 5 

    SY剖面端元的粒度频率分布曲线和随时间序列的变化特征

    Figure 5. 

    Grain size frequency distribution curve of end members in the SY profile and its variation characteristics with time series

    图 6 

    SY剖面记录的区域风尘历史与相关古气候记录的比较

    Figure 6. 

    Comparison of regional aeolian dust history recorded from SY profile with related paleoclimate records.

    表 1 

    SY剖面AMS14 C测年结果

    Table 1. 

    Results of AMS14 C dating of SY profile

    实验编号 深度
    (cm)
    测年
    材料
    14C年代
    (a B. P.)
    校正年代
    (2σ,cal.a B. P.)
    Bacon年代
    (cal.a B. P.)
    Beta-534759 98 有机质 1820±30 1826~1692 1863. 6~1621.1
    Beta-534760 200 有机质 3420±30 3725~3584 3849.3~3532.7
    Beta-534761 302 有机质 6470±30 7433~7321 7474.9~7153.8
    Beta-534762 402 有机质 8240±30 9310~9090 9440.7~9078.9
    Beta-534763 502 有机质 10160±30 12021~11707 12015. 4~11397.4
    Beta-534764 602 有机质 11600±30 13498~13324 13613.3~13298.3
    下载: 导出CSV

    表 2 

    SY剖面端元参数特征

    Table 2. 

    Parameter characteristics of end members in the SY profile

    端元 众数粒径
    (μm)
    平均粒径
    Mz(μm)
    分选
    系数
    偏度 峰度 粘土
    (%)
    粉砂
    (%)

    (%)
    EM1 1.59 2.13 3.02 0.15 0.96 75.20 24.14 0.66
    EM2 14.16 12.45 2.12 -0.04 0.98 9.35 89.11 1.53
    EM3 39.91 32.76 2.03 -0.11 1.00 0.75 76.88 22.37
    EM4 89.34 104.84 1.88 0.15 0.97 0.00 15.59 84.41
    下载: 导出CSV

    表 3 

    SY剖面各端元组分的相关性

    Table 3. 

    The correlation of end members in the SY profile

    EM1 EM2 EM3 EM4
    EM1 1
    EM2 0.710* 1
    EM3 -0.827* -0.912* 1
    EM4 -0.324* -0.365* 0.058 1
    *表示在0.01水平上显著相关
    下载: 导出CSV
  • [1]

    刘东生, 安芷生, 郑洪汉, 等. 黄土与环境[M]. 北京: 科学出版社, 1985: 4-5.

    Liu Tungsheng, An Zhisheng, Zheng Honghan, et al. Loess and Environment[M]. Beijing: Science Press, 1985: 4-5.

    [2]

    Muhs D R. The geologic records of dust in the Quaternary[J]. Aeolian Research, 2013, 9: 3-48. doi: 10.1016/j.aeolia.2012.08.001.

    [3]

    Song Yougui, Zeng Mengxiu, Chen Xiuling, et al. Abrupt climatic events recorded by the Ili loess during the last glaciation in Central Asia: Evidence from grain-size and minerals[J]. Journal of Asian Earth Sciences, 2018, 155: 58-67. doi: 10.1016/j.jseaes.2017.10.040.

    [4]

    范义姣, 田伟东, 杨军怀, 等. 新疆天山地区不同海拔黄土记录的末次冰消期以来的环境演变[J]. 第四纪研究, 2021, 41 (5): 1244-1253. http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2021.05.02

    Fan Yijiao, Tian Weidong, Yang Junhuai, et al. Environmental changes since last deglaciation recorded in loess at different altitude in Tianshan Mountains, Xinjiang[J]. Quaternary Sciences, 2021, 41 (5): 1244-1253. http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2021.05.02

    [5]

    魏海涛, 陈发虎. 伊朗黄土高原表土磁性特征与古气候指示意义[J]. 第四纪研究, 2022, 42 (1): 261-271. http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2022.01.21

    Wei Haitao, Chen Fahu. Magnetic characteristics of surface samples from NE Iran and its paleoenvironmental implications[J]. Quaternary Sciences, 2022, 42 (1): 261-271. http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2022.01.21

    [6]

    Bokhorst M P, Vandenberghe J, Sümegi P, et al. Atmospheric circulation patterns in central and eastern Europe during the Weichselian Pleniglacial inferred from loess grain-size records[J]. Quaternary International, 2011, 234 (1-2): 62-74. doi: 10.1016/j.quaint.2010.07.018

    [7]

    Varga G. Similarities among the Plio-Pleistocene terrestrial aeolian dust deposits in the world and in Hungary[J]. Quaternary International, 2011, 234 (1-2): 98-108. doi: 10.1016/j.quaint.2010.09.011

    [8]

    董欣欣, 杨石岭, 唐自华, 等. 基于黄土粒度估算粉尘源区——沉积区距离的新方法[J]. 中国科学: 地球科学, 2016, 46 (10): 1406-1412. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201610011.htm

    Dong Xinxin, Yang Shiling, Tang Zihua, et al. A grain-size-based model for dust source-to-sink distance reconstruction: A case study from Chinese loess[J]. Science China: Earth Sciences, 2016, 46 (10): 1406-1412. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201610011.htm

    [9]

    Sun Y, Wang X, Liu Q, et al. Impacts of post-depositional processes on rapid monsoon signals recorded by the last glacial loess deposits of Northern China[J]. Earth and Planetary Science Letters, 2010, 289 (1-2): 171-179. doi: 10.1016/j.epsl.2009.10.038

    [10]

    郭飞, 王婷, 刘宇明, 等. 临夏黄土记录的26万年来季风快速变化[J]. 第四纪研究, 2019, 39 (3): 557-564. http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2019.03.04

    Guo Fei, Wang Ting, Liu Yuming, et al. Rapid Asian monsoon changes recorded by loess depositions in Linxia since 260kaB.P. [J]. Quaternary Sciences, 2019, 39 (3): 557-564. http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2019.03.04

    [11]

    Sun Jimin, Ye Jie, Wu Wenyu, et al. Late Oligocene-Miocene mid-latitude aridification and wind patterns in the Asian interior[J]. Geology, 2010, 38 (6): 515-518. doi: 10.1130/G30776.1

    [12]

    Li Y, Song Y, Kaskaoutis D G, et al. Atmospheric dust dynamics in southern Central Asia: Implications for buildup of Tajikistan loess sediments[J]. Atmospheric Research, 2019, 229: 74-85. doi: 10.1016/j.atmosres.2019.06.013.

    [13]

    Tanaka T Y, Chiba M. A numerical study of the contributions of dust source regions to the global dust budget[J]. Global and Planetary Change, 2006, 52 (1-4): 88-104. doi: 10.1016/j.gloplacha.2006.02.002

    [14]

    Jia J, Gao F Y, Xia D S, et al. Moisture variations in arid Central Asia and its out-of-phase relationship with the Asian monsoon during MIS5: Evidence from loess records[J]. Journal of Quaternary Science, 2018, 33 (4): 435-443. doi: 10.1002/jqs.3024

    [15]

    Li Y, Song Y G, Fitzsimmons K E, et al. Eolian dust dispersal patterns since the last glacial period in eastern Central Asia: Insights from a loess-paleosol sequence in the Ili Basin[J]. Climate of the Past, 2018, 14 (3): 271-286. doi: 10.5194/cp-14-271-2018

    [16]

    李越, 宋友桂, 宗秀兰, 等. 伊犁盆地北部山麓黄土粒度端元指示的粉尘堆积过程[J]. 地理学报, 2019, 74 (1): 162-177. https://www.cnki.com.cn/Article/CJFDTOTAL-DLXB201901013.htm

    Li Yue, Song Yougui, Zong Xiulan, et al. Dust accumulation processes of piedmont loess indicated by grain-size end members in northern Ili Basin[J]. Acta Geographica Sinica, 2019, 74 (1): 162-177. https://www.cnki.com.cn/Article/CJFDTOTAL-DLXB201901013.htm

    [17]

    Jia J, Wang N, Wang Z, et al. Weakened dust activity in southern Central Asia during Heinrich events[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2022, 587: 110805. doi: 10.1016/j.palaeo.2021.110805.

    [18]

    Kang S, Wang X, Wang N, et al. Siberian High modulated suborbitalscale dust accumulation changes over the past 30ka in the eastern Yili Basin, Central Asia[J]. Paleoceanography and Paleoclimatology, 2022, 37 (5): e2021PA004360. doi: 10.1029/2021PA004360.

    [19]

    Li Y, Song Y, Kaskaoutis D G, et al. Atmospheric dust dynamics over Central Asia: A perspective view from loess deposits[J]. Gondwana Research, 2022, 109: 150-165. doi: 10.1016/j.gr.2022.04.019.

    [20]

    Gao F, Zheng X, Jia J, et al. Evolution of near-surface wind strength in northeastern arid Central Asia during the Holocene[J]. Paleoceanography and Paleoclimatology, 2021, 36 (2): e2020PA003970. doi: 10.1029/2020PA003970.

    [21]

    郎文哲. 1600a来北疆吉力湖沉积记录的风沙活动历史[D]. 兰州: 兰州大学硕士论文, 2020: 40-44.

    Lang Wenzhe. A 1600-year Eolian Activity Record from Jili Lake, North Xinjiang[D]. Lanzhou: The Master's Thesis of Lanzhou University, 2020: 40-44.

    [22]

    Han W, Lü S, Appel E, et al. Dust storm outbreak in Central Asia after similar to 3.5 kyr BP[J]. Geophysical Research Letters, 2019, 46 (13): 7624-7633. doi: 10.1029/2018GL081795

    [23]

    Li Y, Song Y, Kaskaoutis D G, et al. Aeolian dust dynamics in the Fergana Valley, Central Asia, since~30ka inferred from loess deposits[J]. Geoscience Frontiers, 2021, 12 (5): 101180. doi: 10.1016/j.gsf.2021.101180.

    [24]

    Issanova G, Abuduwaili J. Aeolian Processes as Dust Storms in the Deserts of Central Asia[M]. Singapore: Springer, 2017: 101-103.

    [25]

    Lu H, An Z. Pretreated methods on loess-palaeosol samples granulometry[J]. Chinese Science Bulletin, 1998, 43 (3): 237-240. doi: 10.1007/BF02898920

    [26]

    Liu X, Sun Y, Vandenberghe J, et al. Palaeoenvironmental implication of grain-size compositions of terrace deposits on the western Chinese Loess Plateau[J]. Aeolian Research, 2018, 32: 202-209. doi: 10.1016/j.aeolia.2018.03.008.

    [27]

    Weltje G J. End-member modeling of compositional data: Numerical-statistical algorithms for solving the explicit mixing problem[J]. Mathematical Geology, 1997, 29 (4): 503-549. doi: 10.1007/BF02775085

    [28]

    王思齐, 魏东岚, 张威. 末次冰期以来辽东半岛风沙沉积的粒度端元特征与古气候演变研究[J]. 第四纪研究, 2022, 42 (2): 338-349. http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2022.02.02

    Wang Siqi, Wei Donglan, Zhang Wei. The End-member characteristics of the grain size of the aeolian sand deposits in the Liaodong Peninsula since the last glacial period and the study on paleoclimate evolution[J]. Quaternary Sciences, 2022, 42 (2): 338-349. http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2022.02.02

    [29]

    陈海涛, 孔凡彪, 徐树建, 等. 庙岛群岛晚更新世以来黄土粒度端元揭示的粉尘堆积过程[J]. 第四纪研究, 2021, 41 (5): 1306-1316. http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2021.05.07

    Chen Haitao, Kong Fanbiao, Xu Shujian, et al. Dust accumulation process indicated by grain size end-members of the coastal loess since the Late Pleistocene in Miaodao islands of Shandong Province[J]. Quaternary Sciences, 2021, 41 (5): 1306-1316. http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2021.05.07

    [30]

    薛红盼. 青海湖北部地区全新世风成沉积记录的环境变化[D]. 西宁: 中国科学院大学(中国科学院青海盐湖研究所)硕士学位论文, 2021: 24-25.

    Xue Hongpan. Holocene Environmental Evolution Recorded by Aeolian Deposits in the Northern Qinghai Lake Area[D]. Xining: The Master Thesis of University of Chinese Academy of Sciences(Qinghai Institute of Salt Lakes, Chinese Academy of Sciences), 2021: 24-25.

    [31]

    白敏, 鲁瑞洁, 丁之勇, 等. 青海湖湖东沙地粒度端元分析及其指示意义[J]. 第四纪研究, 2020, 40 (5): 1203-1215. http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2020.05.10

    Bai Min, Lu Ruijie, Ding Zhiyong, et al. End-member analysis of grain-size in the east of Qinghai Lake and its environmental implications[J]. Quaternary Sciences, 2020, 40 (5): 1203-1215. http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2020.05.10

    [32]

    Paterson G A, Heslop D. New methods for unmixing sediment grain size data[J]. Geochemistry, 2015, 16 (12): 4494-4506.

    [33]

    Prins M A, Vriend M, Nugteren G, et al. Late Quaternary aeolian dust input variability on the Chinese Loess Plateau: inferences from unmixing of loess grain-size records[J]. Quaternary Science Reviews, 2007, 26 (1-2): 230-242. doi: 10.1016/j.quascirev.2006.07.002

    [34]

    孔凡彪, 陈海涛, 徐树建, 等. 山东章丘黄土粒度指示的粉尘堆积过程及古气候意义[J]. 地理学报, 2021, 76 (5): 1163-1176. https://www.cnki.com.cn/Article/CJFDTOTAL-DLXB202105010.htm

    Kong Fanbiao, Chen Haitao, Xu Shujian, et al. Dust accumulation processes and palaeoenvironmental significance of loess indicated by grain size in Zhangqiu, Shandong Province[J]. Acta Geographica Sinica, 2021, 76 (5): 1163-1176. https://www.cnki.com.cn/Article/CJFDTOTAL-DLXB202105010.htm

    [35]

    Blaauw M. Methods and code for 'classical' age-modelling of radiocarbon sequences[J]. Quaternary Geochronology, 2010, 5 (5): 512-518. doi: 10.1016/j.quageo.2010.01.002

    [36]

    Blaauw M, Christen J A. Flexible paleoclimate age-depth models using an autoregressive gamma process[J]. Bayesian Analysis, 2011, 6 (3): 457-474. doi: 10.1214/ba/1339616472

    [37]

    史正涛, 方小敏, 宋友桂, 等. 天山北坡黄土记录的中更新世以来干旱化过程[J]. 海洋地质与第四纪地质, 2006, 26 (3): 109-114. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ200603017.htm

    Shi Zhengtao, Fang Xiaomin, Song Yougui, et al. Loess sediments in the north slope of Tianshan Mountains and its indication of desertification since Middle Pleistocene[J]. Marine Geology & Quaternary Geology, 2006, 26 (3): 109-114. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ200603017.htm

    [38]

    Bronger A, Heinkele T. Mineralogical and clay mineralogical aspects of loess research[J]. Quaternary International, 1990, 7: 37-51. doi: 10.1016/1040-6182(90)90037-5.

    [39]

    Qin X, Cai B, Liu T. Loess record of the aerodynamic environment in the East Asia monsoon area since 60, 000 years before present[J]. Journal of Geophysical Research: Solid Earth, 2005, 110(B1). doi: 10.1029/2004JB003131.

    [40]

    Qiang M, Lang L, Wang Z. Do fine-grained components of loess indicate westerlies: Insights from observations of dust storm deposits at Lenghu(Qaidam Basin, China)[J]. Journal of Arid Environments, 2010, 74 (10): 1232-1239.

    [41]

    Vlaminck S, Kehl M, Lauer T, et al. Loess-soil sequence at Toshan(Northern Iran): Insights into Late Pleistocene climate change[J]. Quaternary International, 2016, 399: 122-135. doi: 10.1016/j.quaint.2015.04.028.

    [42]

    Vandenberghe J. Grain size of fine-grained windblown sediment: A powerful proxy for process identification[J]. Earth-Science Reviews, 2013, 121: 18-30. doi: 10.1016/j.earscirev.2013.03.001.

    [43]

    Nottebaum V, Stauch G, Hartmann K, et al. Unmixed loess grain size populations along the northern Qilian Shan(China): Relationships between geomorphologic, sedimentologic and climatic controls[J]. Quaternary International, 2015, 372: 151-166. doi: 10.1016/j.quaint.2014.12.071.

    [44]

    Pye K. Aeolian Dust and Dust Deposits[M]. London: Academic Press, 1987: 1-256.

    [45]

    Lin Y, Mu G, Xu L, et al. The origin of bimodal grain-size distribution for aeolian deposits[J]. Aeolian Research, 2016, 20: 80-88. doi: 10.1016/j.aeolia.2015.12.001.

    [46]

    Rea D K, Leinen M, Janecek T R. Geologic approach to the long-term history of atmospheric circulation[J]. Science, 1985, 227 (4688): 721-725.

    [47]

    刘蓉, 岳大鹏, 赵景波, 等. 陕西横山L2以来风沙/黄土沉积序列的粒度端元特征及其环境意义[J]. 干旱区地理, 2021, 44 (5): 1328-1338. https://www.cnki.com.cn/Article/CJFDTOTAL-GHDL202105014.htm

    Liu Rong, Yue Dapeng, Zhao Jingbo, et al. Characteristics of grain size end members and its environmental significance of aeolian sand/loess sedimentary sequence since L2 in Hengshan, Shaanxi Province[J]. Arid Land Geography, 2021, 44 (5): 1328-1338. https://www.cnki.com.cn/Article/CJFDTOTAL-GHDL202105014.htm

    [48]

    Smalley I, O'Hara-Dhand K, Wint J, et al. Rivers and loess: The significance of long river transportation in the complex event-sequence approach to loess deposit formation[J]. Quaternary International, 2009, 198 (1-2): 7-18.

    [49]

    Vriend M, Prins M A, Buylaert J P, et al. Contrasting dust supply patterns across the north-western Chinese Loess Plateau during the last glacial-interglacial cycle[J]. Quaternary International, 2011, 240 (1-2): 167-180.

    [50]

    Qiang M R, Chen F H, et al. Grain size in sediments from Lake Sugan: A possible linkage to dust storm events at the northern margin of the Qinghai-Tibetan Plateau[J]. Environmental Geology, 2007, 51 (7): 1229-1238.

    [51]

    程良清, 宋友桂, 李越, 等. 粒度端元模型在新疆黄土粉尘来源与古气候研究中的初步应用. 沉积学报, 2018, 36 (6): 1148-1156. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201806008.htm

    Cheng Liangqing, Song Yougui, Li Yue, et al. Preliminary application of grain size end member model for dust source tracing of Xinjiang loess and paleoclimate reconstruction[J]. Acta Sedimentologica Sinica, 2018, 36 (6): 1148-1156. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201806008.htm

    [52]

    刘梦慧, 李徐生, 韩志勇, 等. 下蜀黄土参数化粒度端元分析及其物源示踪[J]. 地球环境学报, 2021, 12 (5): 510-525. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHJ202105005.htm

    Liu Menghui, Li Xusheng, Han Zhiyong, et al. Parametric end-member analysis of the grain size distribution of the Xiashu loess and its provenance tracing[J]. Journal of Earth Environment, 2021, 12 (5): 510-525. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHJ202105005.htm

    [53]

    Vandenberghe J, Mücher H J, Roebroeks W, et al. Lithostratigraphy and palaeoenvironment of the Pleistocene deposits at Maastricht-Belvédère, Southern Limburg, the Netherlands[J]. Analecta Praehistorica Leidensia, 1985, 18: 7-18. doi: 10.1016/j.jbspin.2012.10.015.

    [54]

    Rousseau D D, Sima A, Antoine P, et al. Link between European and North Atlantic abrupt climate changes over the last glaciation[J]. Geophysical Research Letters, 2007, 34 (22). doi: 10.1029/2007GL031716.

    [55]

    Chen F H, Bloemendal J, Wang J M, et al. High-resolution multi-proxy climate records from Chinese loess: Evidence for rapid climatic changes over the last 75 kyr[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1997, 130 (1-4): 323-335.

    [56]

    Sun Y, An Z, Clemens S C, et al. Seven million years of wind and precipitation variability on the Chinese Loess Plateau[J]. Earth and Planetary Science Letters: A Letter Journal Devoted to the Development in Time of the Earth and Planetary System, 2010, 297 (3/4): 525-535.

    [57]

    梁壮, 任娜欧, 段文凯, 等. 磁山地区黄土-古土壤微形态特征及其古气候意义[J]. 第四纪研究, 2020, 40 (5): 1264-1276. http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2020.05.15

    Liang Zhuang, Ren Na'ou, Duan Wenkai, et al. Micro-morphological characteristics of loess-paleosol in the Cishan area and its paleoclimatic significance[J]. Quaternary Sciences, 2020, 40 (5): 1264-1276. http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2020.05.15

    [58]

    殷志强, 魏刚, 秦小光, 等. 青藏高原东北缘循化-官亭地区2.6万年以来气候变化研究[J]. 第四纪研究, 2019, 39 (5): 1181-1190. http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2019.05.10

    Yin Zhiqiang, Wei Gang, Qin Xiaoguang, et al. Study on the loess records of the climate change since 26kaB.P. from Xunhua to Guanting basin in the northeastern boundary of the Tibetan Plateau[J]. Quaternary Sciences, 2019, 39 (5): 1181-1190. http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2019.05.10

    [59]

    刘浩, 贾佳, 路彩晨, 等. 则克台黄土粒度组分分离及其记录的末次冰期气候波动[J]. 干旱区地理, 2018, 41 (6): 1260-1269. https://www.cnki.com.cn/Article/CJFDTOTAL-GHDL201806013.htm

    Liu Hao, Jia Jia, Lu Caichen, et al. Multi-components separation of loess grain size in Zeketai and the recorded climate fluctuation during the last glacial period[J]. Arid Land Geography, 2018, 41 (6): 1260-1269. https://www.cnki.com.cn/Article/CJFDTOTAL-GHDL201806013.htm

    [60]

    赵庆, 郑祥民, 周立旻, 等. 末次冰期东海嵊山岛黄土粒度端元分析及其环境意义[J/OL]. 沉积学报, 2022, 1-18. doi: 10.14027/j.issn.1000-0550.2022.085.

    Zhao Qing, Zheng Xiangmin, Zhou Limin, et al. Grain size end member characteristics and paleoclimatic significance of loess deposit in Shengshan Island during the Last Glacial Period[J/OL]. Acta Sedimentologica Sinica, 2022, 1-18. doi: 10.14027/j.issn.1000-0550.2022.085.

    [61]

    Gong D Y, Ho C H. The Siberian High and climate change over middle to high latitude Asia[J]. Theoretical and Applied Climatology, 2002, 72 (1-2): 1-9.

    [62]

    Panagiotopoulos F, Shahgedanova M, Hannachi A, et al. Observed trends and teleconnections of the Siberian High: A recently declining center of action[J]. Journal of Climate, 2005, 18 (9): 1411-1422.

    [63]

    Orlovsky L, Orlovsky N, Durdyev A. Dust storms in Turkmenistan[J]. Journal of Arid Environments, 2005, 60 (1): 83-97.

    [64]

    Groll M, Opp C, Aslanov I. Spatial and temporal distribution of the dust deposition in Central Asia-Results from a long term monitoring program[J]. Aeolian Research, 2013, 9: 49-62. doi: 10.1016/j.aeolia.2012.08.002.

    [65]

    Machalett B, Oches E A, Frechen M, et al. Aeolian dust dynamics in Central Asia during the Pleistocene: Driven by the long-term migration, seasonality, and permanency of the Asiatic polar front[J]. Geochemistry, Geophysics, Geosystems, 2008, 9 (8). doi: 10.1029/2007GC001938.

    [66]

    Kang S, Du J, Wang N, et al. Early Holocene weakening and mid- to Late Holocene strengthening of the East Asian winter monsoon[J]. Geology, 2020, 48 (11): 1043-1047.

    [67]

    Maher B A, Hu M. A high-resolution record of Holocene rainfall variations from the western Chinese Loess Plateau: Antiphase behavior of the African/Indian and East Asian summer monsoons[J]. The Holocene, 2006, 16 (3): 68-76.

    [68]

    Xu Z, Mason J A, Xu C, et al. Critical transitions in Chinese dunes during the past 12, 000 years[J]. Science Advances, 2020, 6 (9). doi: 10.1126/sciadv.aay8020.

    [69]

    Laskar J, Robutel P, Joutel F, et al. A long-term numerical solution for the insolation quantities of the Earth[J]. Astronomy and Astrophysics, 2004, 428 (1): 261-285.

  • 加载中

(6)

(3)

计量
  • 文章访问数:  1723
  • PDF下载数:  150
  • 施引文献:  0
出版历程
收稿日期:  2022-07-20
修回日期:  2022-09-30
刊出日期:  2023-01-30

目录