Please wait a minute...
中国腐蚀与防护学报  2024, Vol. 44 Issue (1): 59-70     CSTR: 32134.14.1005.4537.2023.063      DOI: 10.11902/1005.4537.2023.063
  研究报告 本期目录 | 过刊浏览 |
新型高效咪唑希夫碱缓蚀剂对Q235钢在1 mol/L HCl溶液中的缓蚀作用
王鹏杰1,2, 宋昱灏1,2, 樊林1,2, 邓宽海2, 李忠慧3, 梅宗斌4, 郭雷5, 林元华1,2,3()
1.西南石油大学 油气藏地质及开发工程国家重点实验室 成都 610500
2.西南石油大学新能源与材料学院 成都 610500
3.长江大学石油工程学院 武汉 434023
4.四川华宇钻采装备有限公司 泸州 646000
5.铜仁学院材料与化学工程学院 铜仁 554300
Inhibition of Q235 Steel in 1 mol/L HCl Solution by a New Efficient Imidazolium Schiff Base Corrosion Inhibitor
WANG Pengjie1,2, SONG Yuhao1,2, FAN Lin1,2, DENG Kuanhai2, LI Zhonghui3, MEI Zongbin4, GUO Lei5, LIN Yuanhua1,2,3()
1.State Key Laboratory of Oil and Gas Reservoir Geology and Development Engineering, Southwest Petroleum University, Chengdu 610500, China
2.School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China
3.School of Petroleum Engineering, Changjiang University, Wuhan 434023, China
4.Sichuan Huayu Drilling and Production Equipment Co., Ltd., Luzhou 646000, China
5.Materials and Chemical Engineering, Tongren University, Tongren 554300, China
引用本文:

王鹏杰, 宋昱灏, 樊林, 邓宽海, 李忠慧, 梅宗斌, 郭雷, 林元华. 新型高效咪唑希夫碱缓蚀剂对Q235钢在1 mol/L HCl溶液中的缓蚀作用[J]. 中国腐蚀与防护学报, 2024, 44(1): 59-70.
Pengjie WANG, Yuhao SONG, Lin FAN, Kuanhai DENG, Zhonghui LI, Zongbin MEI, Lei GUO, Yuanhua LIN. Inhibition of Q235 Steel in 1 mol/L HCl Solution by a New Efficient Imidazolium Schiff Base Corrosion Inhibitor[J]. Journal of Chinese Society for Corrosion and protection, 2024, 44(1): 59-70.

全文: PDF(9316 KB)   HTML
摘要: 

以油酸、二乙烯三胺、碘代正丁烷和肉桂醛等为原料,在不同温度下进行酰胺化、脱水环化、季铵化等过程设计合成一种适用于酸洗工况的咪唑希夫碱(MIX)缓蚀剂,通过失重实验、电化学实验、理论模拟和表面分析等方法系统的探究了MIX在1.00 mol/L HCl溶液中对Q235钢的缓蚀性能及其缓蚀机理。结果表明:在浓度为2.00 mmol/L时,采用失重实验,电化学阻抗(EIS),动电位极化(Tafel)测得的缓蚀效率分别为98.64%,96.93%和99.15%,表明MIX在HCl环境中能够发挥优异的缓蚀性能。电化学实验和等温吸附模型表明,MIX是一种阴极型缓蚀剂,能够自发吸附在Q235钢表面,且遵循Langmuir吸附等温模型。MIX能够在Q235钢表面形成稳定的保护膜,进一步阻碍了腐蚀体系内电荷转移速率。XPS,EDS和FT-IR分析证实了MIX分子能够吸附在Q235钢表面,密度泛函理论(DFT)说明MIX的活性位点为苯基,咪唑环上的N原子,分子动力学(MD)进一步证实了MIX能够吸附在Q235钢表面。MIX在HCl环境中能够发挥优异的缓蚀性能,主要在于Q235钢表面形成了稳定的保护膜,降低了腐蚀体系内电荷转移速率。

关键词 咪唑希夫碱电化学失重实验缓蚀性能理论计算    
Abstract

An imidazole Schiff base (MIX) corrosion inhibitor was synthesized via processes of amidation, dehydration cyclization, and quaternization at different temperatures with oleic acid, diethylenetriamine, n-butane iodide and cinnamaldehyde as raw material. The corrosion inhibition performance and mechanism of MIX on Q235 steel in 1.00 mol/L HCl were systematically investigated by means of mass loss measurement, electrochemical testing, and surface analysis methods, as well as theoretical simulations. The results showed that the corrosion inhibition efficiency determined by mass loss method, electrochemical impedance spectroscopy (EIS), and potentiodynamic polarization (Tafel) were 98.64%, 96.93%, and 99.15%, respectively for adding a dose of MIX 2 mmol/L in the 2.00 mmol/L HCl solution, indicating that MIX can exhibit excellent corrosion inhibition performance in HCl environments. Electrochemical testing and isothermal adsorption models indicate that MIX is a cathodic corrosion inhibitor that can spontaneously adsorb on the surface of Q235 steel, following the Langmuir adsorption isotherm model. MIX can form a stable protective film on the surface of Q235 steel, further hindering the charge transfer rate within the corrosion system. XPS, EDS and FT-IR analysis confirmed that MIX molecules may be adsorbed on the surface of Q235 steel. Density functional theory (DFT) showed that the active site of MIX was phenyl, and the N atom on the imidazole ring. Molecular dynamics (MD) further confirmed that MIX may be adsorbed on the surface of Q235 steel. MIX can exhibit excellent corrosion inhibition performance in HCl environments, mainly due to the formation of a stable protective film on the surface of Q235 steel, which reduces the charge transfer rate within the corrosion system.

Key wordsimidazole Schiff base    electrochemistry    mass loss experiment    corrosion inhibition performance    theoretical calculation
收稿日期: 2023-03-10      32134.14.1005.4537.2023.063
ZTFLH:  TG174  
基金资助:国家自然科学基金(52074232);四川省自然科学基金(2022NSFSC0028);中国博士后科学基金(2022M710117);四川省青年科学基金(2022NSFSC0994)
通讯作者: 林元华,E-mail:yhlin28@163.com,研究方向为油气钻井工艺和油井管材料
Corresponding author: LIN Yuanhua, E-mail: yhlin28@163.com
作者简介: 王鹏杰,男,1993年生,硕士生
图1  MIX缓蚀剂分子的合成路线
图2  MIX的红外谱图
图3  MIX在重水中NMR:1H-NMR和13C-NMR谱
图4  Q235钢在不同MIX浓度溶液中的开路电位
图5  Q235钢在不同浓度MIX溶液中Nyquist图及其等效电路

C

mmol/L

Rs

Ω·cm2

Y0, f× 10-5

Ω-1·cm-2·sn

nf

Cf

μF·cm2

Rf

Ω·cm2

Y0, rct× 10-5

Ω-1·cm-2·sn

nrct

Cdl

μF·cm2

Rct

Ω·cm2

χ2ηp
0.008.592.450.9910.371.4812.460.8133.3217.140.0015/
0.201.104.9150.809.4773.311.210.8021.52267.80.004792.04%
0.501.4115.260.797.87411.13.660.7418.7276.840.005194.44%
1.002.718.780.765.6183.8517.910.7011.91696.30.003896.52%
2.002.4619.450.723.67790.38.440.718.3295.370.005696.93%
表1  Q235钢在MIX不同缓蚀溶液中EIS参数
图6  Q235钢在不同MIX缓蚀溶液中的动电位极化图
Concentration / mmol·L-1Ecorr / VIcorr / mA·cm-2

-bc

mV·dec-1

ba

mV·dec-1

η
0.00-0.4783.5410143.76150.26/
0.20-0.4930.0827147.95158.0597.66%
0.50-0.4840.0525179.17157.7798.51%
1.00-0.4890.0332201.65145.5399.06%
2.00-0.4930.0301255.68161.2999.15%
表2  极化曲线参数及缓蚀效率
MIX, 25oC / mmol·L-1CR / mg·cm-2·h-1η
0.0014.20 ± 0.0011/
0.200.97 ± 0.000693.70%
0.500.63 ± 0.000995.91%
1.000.35 ± 0.000597.73%
2.000.21 ± 0.000998.64%
表3  Q235钢在不同MIX缓蚀溶液中的失重参数
图7  Langmuir、El-Awady、Flory-Huggins、Freundlich和Temkin等温吸附曲线
图8  Q235钢在不同浓度MIX缓蚀溶液中失重后的表面形貌
图9  失重后的Q235钢表面和EDS能谱
图10  失重后Q235钢表面和MIX的红外图
图11  失重后的Q235钢表面的XPS能谱
图12  MIX分子的分子结构、HOMO、 LUMO和ESP
图13  MIX在Fe(110)上的最佳吸附形态
1 Liu Q Y, Song Z J, Han H, et al. A novel green reinforcement corrosion inhibitor extracted from waste Platanus acerifolia leaves [J]. Constr. Build. Mater., 2020, 260: 119695
doi: 10.1016/j.conbuildmat.2020.119695
2 Liu D M, Yang K, Shi X, et al. Synergistic inhibition effect between 2-mercaptobenzothiazole and chloride ion in sulfuric acid solution [J]. Surf. Technol., 2021, 50(7): 351
2 刘冬梅, 杨 康, 石 鑫 等. 硫酸溶液中2-巯基苯并噻唑与氯离子的协同缓蚀作用 [J]. 表面技术, 2021, 50(7): 351
3 Ni X L, Li H, Li Y F, et al. Corrosion protection of imidazoline corrosion inhibitors with different carbon chain lengths in CO2 driving oil environment [J]. Surf. Technol., 2023, 52(8): 278
3 倪小龙, 李 欢, 李云飞 等. 不同碳链长度咪唑啉缓蚀剂在CO2驱采油环境中的腐蚀防护作用 [J]. 表面技术, 2023, 52(8): 278
4 Ren X D, Wang H, Wei Q, et al. Electrochemical behaviour of N80 steel in CO2 environment at high temperature and pressure conditions [J]. Corros. Sci., 2021, 189: 109619
doi: 10.1016/j.corsci.2021.109619
5 Liu M M, Yang X B, Chen X Q, et al. Research progress on corrosion behavior of metallic materials in acetic acid environment [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 13
5 刘明明, 杨小兵, 陈晓琪 等. 醋酸环境下金属材料腐蚀行为的研究进展 [J]. 中国腐蚀与防护学报, 2023, 43: 13
doi: 10.11902/1005.4537.2022.186
6 Pan C G, Chen N, He J Z, et al. Effects of corrosion inhibitor and functional components on the electrochemical and mechanical properties of concrete subject to chloride environment [J]. Construct. Build. Mater., 2020, 260: 119724
doi: 10.1016/j.conbuildmat.2020.119724
7 Katiyar P K, Behera P K, Misra S, et al. Comparative corrosion behavior of five different microstructures of rebar steels in simulated concrete pore solution with and without chloride addition [J]. J. Mater. Eng. Perform., 2019, 28: 6275
doi: 10.1007/s11665-019-04339-x
8 Rangaswamy V M, Keshavayya J. Anticorrosive ability of cycloheximide on mild steel corrosion in 0.5M H2SO4 Solution [J]. Chem. Data Collect., 2022, 37: 100795
doi: 10.1016/j.cdc.2021.100795
9 Firdhouse M J, Nalini D. Corrosion inhibition of mild steel in acidic media by 5′-Phenyl-2′,4′-dihydrospiro [indole-3,3′-pyrazol]-2(1H)-one [J]. J. Chem., 2013, 2013: 835365
10 Saady A, Rais Z, Benhiba F, et al. Chemical, electrochemical, quantum, and surface analysis evaluation on the inhibition performance of novel imidazo [4,5-b] pyridine derivatives against mild steel corrosion [J]. Corros. Sci., 2021, 189: 109621
doi: 10.1016/j.corsci.2021.109621
11 Li R H, Wang Z X, Xu Q W, et al. Synthesis, characterization and physicochemical properties of new chiral quinuclidinol quaternary ammonium salts [J]. J. Mol. Struct., 2020, 1209: 127918
doi: 10.1016/j.molstruc.2020.127918
12 Qiang Y J, Zhang S T, Yan S, et al. Three indazole derivatives as corrosion inhibitors of copper in a neutral chloride solution [J]. Corros. Sci., 2017, 126: 295
doi: 10.1016/j.corsci.2017.07.012
13 Yang X Y, Yang Y T, Lu X P, et al. Research progress of corrosion inhibitor for Mg-alloy [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 435
13 杨欣宇, 杨云天, 卢小鹏 等. 镁合金缓蚀剂研究进展 [J]. 中国腐蚀与防护学报, 2022, 42: 435
doi: 10.11902/1005.4537.2021.295
14 Zhang M, Li Q, Zhang K, et al. Corrosion inhibition properties of propylenediamine-type double mannich base acidizing corrosion inhibitor [J]. Corros. Prot., 2022, 43(6): 26
14 张 萌, 李 清, 张鲲 等. 丙二胺型双曼尼希碱酸化缓蚀剂的缓蚀性能 [J]. 腐蚀与防护, 2022, 43(6): 26
15 Guo N N, Wang X R, Gu Y Z, et al. Research on synthesis and application of quaternary ammonium salt amphoteric Gemini surfactants [J]. Petrochem. Technol., 2021, 50: 608
15 郭乃妮, 王小荣, 古元梓 等. 季铵盐型两性双子表面活性剂的合成及应用研究进展 [J]. 石油化工, 2021, 50: 608
doi: 10.3969/j.issn.1000-8144.2021.06.017
16 Li J Y, Zhao J Q, Shao H Y, et al. Synthesis of thiourido-imidazoline corrosion inhibitor and its corrosion inhibition performance [J]. Oilfield Chem., 2021, 38: 152
16 李继勇, 赵俊桥, 邵红云 等. 硫脲基咪唑啉缓蚀剂的合成及其缓蚀性能 [J]. 油田化学, 2021, 38: 152
17 Cheng Y S, Xu H W, Huang C S, et al. Study on corrosion inhibition performance of water-soluble imidazoline amide on A3 steel [J]. Appl. Chem. Ind., 2023, 52: 779
17 程玉山, 徐会武, 黄长山 等. 水溶性咪唑啉酰胺对A3钢的缓蚀性能研究 [J]. 应用化工, 2023, 52: 779
18 Yang Q Z, Zhang T L, Liu C S, et al. Preparation and inhibition mechanism of gemini imidazoline quaternary ammonium salt inhibitor [J]. Chem. Ind. Eng. Progress, 2023: 1-13, doi: 10.16085/j.issn.1000-6613.2022-2169
18 阳清正, 张太亮, 刘从胜 等. 双子型咪唑啉季铵盐缓蚀剂的制备及缓蚀机理 [J]. 化工进展, 2023: 1-13, doi: 10.16085/j.issn.1000-6613.2022-2169
19 Lu Y, Zhang G X, Liu B S, et al. The corrosion inhibition effect of proparynol-modified midazolin on X65 steel in CO2/H2S co-existence system [J]. Surf. Technol., 2021, 50(7): 345
19 陆 原, 张国欣, 刘保山 等. 丙炔醇改性硫脲基咪唑啉在CO2/H2S共存体系中对X65钢的腐蚀抑制作用 [J]. 表面技术, 2021, 50(7): 345
20 Li J L, Shen Y B, Li J Y, et al. Study on the inhibitor of schiff base pyridine quaternary ammonium salt for anti-high temperature and high concentration hydrochloric acid [J]. Surf. Technol., 2021, 50(9): 303
20 李俊莉, 沈燕宾, 李霁阳 等. 抗高温高浓盐酸席夫碱基吡啶季铵盐缓蚀剂的研究 [J]. 表面技术, 2021, 50(9): 303
21 Limco R A, Bacosa H P, Lubguban A A, et al. Morinda citrifolia (Noni) leaf extract as corrosion inhibitor for steel-reinforced concrete in saline environment [J]. Int. J. Environ. Sci. Technol., 2020, 17: 4531
doi: 10.1007/s13762-020-02795-w
22 Cao F T, Wei J, Dong J H, et al. Corrosion inhibition behavior of 1-hydroxyethylidene-1,1-diphosphonic acid on 20SiMn steel in simulated concrete pore solution containing Cl- [J]. Acta Metall. Sin., 2020, 56: 898
22 曹凤婷, 魏 洁, 董俊华 等. 羟基亚乙基二膦酸对20SiMn钢在含Cl-混凝土模拟孔隙液中的缓蚀行为 [J]. 金属学报, 2020, 56: 898
doi: 10.11900/0412.1961.2019.00382
23 Cao S Y, Liu D, Ding H, et al. Corrosion inhibition effects of a novel ionic liquid with and without potassium iodide for carbon steel in 0.5 M HCl solution: An experimental study and theoretical calculation [J]. J. Mol. Liquids, 2019, 275: 729
doi: 10.1016/j.molliq.2018.11.115
24 Wu H, Deng S D, Li X H. Synergistic inhibition effect of cuscuta chinensis lam extract and potassium iodide on cold rolled steel in hydrochloric acid [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 77
24 吴 浩, 邓书端, 李向红. 菟丝子提取物与碘化钾对冷轧钢在盐酸中的缓蚀协同效应 [J]. 中国腐蚀与防护学报, 2023, 43: 77
25 Verma C, Quraishi M A, Ebenso E E, et al. 3-Amino alkylated indoles as corrosion inhibitors for mild steel in 1M HCl: Experimental and theoretical studies [J]. J. Mol. Liquids, 2016, 219: 647
doi: 10.1016/j.molliq.2016.04.024
26 De A, Santra S, Kovalev I S, et al. Synthesis of 2-imidazolines by co-grinding of N-tosylaziridines and nitriles [J]. Mendeleev Commun., 2020, 30: 188
doi: 10.1016/j.mencom.2020.03.019
27 Hashem M A, Elnagar M M, Kenawy I M, et al. Synthesis and application of hydrazono-imidazoline modified cellulose for selective separation of precious metals from geological samples [J]. Carbohydr. Polym., 2020, 237: 116177
doi: 10.1016/j.carbpol.2020.116177
28 Hameed R S A, Al-Bagawi A H, Shehata H A, et al. Corrosion inhibition and adsorption properties of some heterocyclic derivatives on C-steel surface in HCl [J]. J. Bio. Tribo-Corros., 2020, 6: 51
29 Kousar K, Ljungdahl T, Wetzel A, et al. An exemplar imidazoline surfactant for corrosion inhibitor studies: synthesis, characterization, and physicochemical properties [J]. J. Surfactants Deterg., 2020, 23: 225
doi: 10.1002/jsde.12363
30 Umoren S A, Solomon M M, Obot I B, et al. A critical review on the recent studies on plant biomaterials as corrosion inhibitors for industrial metals [J]. J. Ind. Eng. Chem., 2019, 76: 91
31 Dehghani A, Bahlakeh G, Ramezanzadeh B. A detailed electrochemical/theoretical exploration of the aqueous Chinese gooseberry fruit shell extract as a green and cheap corrosion inhibitor for mild steel in acidic solution [J]. J. Mol. Liquids, 2019, 282: 366
doi: 10.1016/j.molliq.2019.03.011
32 Ansari K R, Chauhan D S, Quraishi M A, et al. Bis(2-aminoethyl)amine-modified graphene oxide nanoemulsion for carbon steel protection in 15% HCl: Effect of temperature and synergism with iodide ions [J]. J. Colloid Interface Sci., 2020, 564: 124
doi: 10.1016/j.jcis.2019.12.125
33 Zhang Q, Guo L, Huang Y, et al. Influence of an imidazole-based ionic liquid as electrolyte additive on the performance of alkaline Al-air battery [J]. J. Power Sources, 2023, 564: 232901
34 Zhu M Y, He Z Y, Guo L, et al. Corrosion inhibition of eco-friendly nitrogen-doped carbon dots for carbon steel in acidic media: Performance and mechanism investigation [J]. J. Mol. Liquids, 2021, 342: 117583
doi: 10.1016/j.molliq.2021.117583
35 Zhu M Y, Guo L, He Z Y, et al. Insights into the newly synthesized N-doped carbon dots for Q235 steel corrosion retardation in acidizing media: A detailed multidimensional study [J]. J. Colloid Interface Sci., 2022, 608: 2039
doi: 10.1016/j.jcis.2021.10.160
36 Qiang Y J, Zhang S T, Wang L P. Understanding the adsorption and anticorrosive mechanism of DNA inhibitor for copper in sulfuric acid [J]. Appl. Surf. Sci., 2019, 492: 228
37 Qiang Y J, Guo L, Li H, et al. Fabrication of environmentally friendly Losartan potassium film for corrosion inhibition of mild steel in HCl medium [J]. Chem. Eng. J., 2021, 406: 126863
38 Qiang Y J, Zhang S T, Zhao H C, et al. Enhanced anticorrosion performance of copper by novel N-doped carbon dots [J]. Corros. Sci., 2019, 161: 108193
39 Qiang Y J, Li H, Lan X J. Self-assembling anchored film basing on two tetrazole derivatives for application to protect copper in sulfuric acid environment [J]. J. Mater. Sci. Technol., 2020, 52: 63
doi: 10.1016/j.jmst.2020.04.005
40 Li X H, Xu X, Lei R, et al. Synergistic inhibition effect of walnut green husk extract complex inhibitors on steel in phosphoric acid [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 358
40 李向红, 徐 昕, 雷 然 等. 磷酸中核桃青皮复配缓蚀剂对冷轧钢的缓蚀协同效应 [J]. 中国腐蚀与防护学报, 2022, 42: 358
doi: 10.11902/1005.4537.2021.160
41 Wang F P, Kang W L, Jing H M. Principles, Methods and Applications of Corrosion Electrochemistry [M]. Beijing: Chemical Industry Press, 2008
41 王凤平, 康万利, 敬和民. 腐蚀电化学原理、方法及应用 [M]. 北京: 化学工业出版社, 2008
42 Lei R, Shi C J, Li X H. Corrosion inhibition of aluminum in HCl solution by flos sophorae immaturus extract [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 939
42 雷 然, 石成杰, 李向红. 槐米提取物对Al在HCl溶液中的缓蚀作用 [J]. 中国腐蚀与防护学报, 2022, 42: 939
43 Tantawy A H, Soliman K A, Abd El-Lateef H M. Novel synthesized cationic surfactants based on natural piper nigrum as sustainable-green inhibitors for steel pipeline corrosion in CO2-3.5%NaCl: DFT, Monte Carlo simulations and experimental approaches [J]. J. Cleaner Prod., 2020, 250: 119510
doi: 10.1016/j.jclepro.2019.119510
44 Deng Z H, Lei R, Zhang Z Y, et al. Corrosion inhibition of vetiver extract on steel in hydrochloric acid environment [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 173
44 邓志华, 雷 然, 张智勇 等. 香根草提取物对冷轧钢在盐酸溶液中的缓蚀作用 [J]. 中国腐蚀与防护学报, 2023, 43: 173
doi: 10.11902/1005.4537.2022.065
45 Douche D, Elmsellem H, Anouar E H, et al. Anti-corrosion performance of 8-hydroxyquinoline derivatives for mild steel in acidic medium: Gravimetric, electrochemical, DFT and molecular dynamics simulation investigations [J]. J. Mol. Liquids, 2020, 308: 113042
46 Hamani H, Daoud D, Benabid S, et al. Electrochemical, density functional theory (DFT) and molecular dynamic (MD) simulations studies of synthesized three news Schiff bases as corrosion inhibitors on mild steel in the acidic environment [J]. J. Indian Chem. Soc., 2022, 99: 100492
doi: 10.1016/j.jics.2022.100492
47 Eze S I, Ibeji C U, Akpan E D, et al. Corrosion performance of Schiff base derived from 2,5-dimethoxybenzyaldehyde: X-ray structure, experimental and DFT studies [J]. Chem. Papers, 2022, 76: 5187
doi: 10.1007/s11696-022-02244-7
48 Shi X, Jiang Y Y, Wang H B, et al. Density functional theory analysis on four pyrazine corrosion inhibitors and their adsorption behavior on Cu(111) surface [J]. CIESC J., 2017, 68: 3211
48 石 鑫, 姜云瑛, 王洪博 等. 4种吡嗪类缓蚀剂及其在Cu(111)面吸附行为的密度泛函理论研究 [J]. 化工学报, 2017, 68: 3211
49 Chen H B, Li Y C, Zhang X F, et al. Quantum chemistry calculation of corrosion inhibition performance of oleic-acid imidazoline corrosion inhibitors [J]. Corros. Prot., 2014, 35: 1234
49 陈怀兵, 李养池, 张新发 等. 油酸基咪唑啉缓蚀剂缓蚀性能和量子化学计算 [J]. 腐蚀与防护, 2014, 35: 1234
50 Zheng T Y, Wang L, Liu J Y, et al. Corrosion inhibition of ionic liquids on the surface of Q235 steel in methanol/sulfuric acid medium [J]. CIESC J., 2020, 71: 2230
doi: 10.11949/0438-1157.20191372
50 郑天宇, 王 璐, 刘金彦 等. 离子液体在甲醇/硫酸介质中对Q235钢表面的缓蚀性能 [J]. 化工学报, 2020, 71: 2230
doi: 10.11949/0438-1157.20191372
51 Hsissou R, Benhiba F, Abbout S, et al. Trifunctional epoxy polymer as corrosion inhibition material for carbon steel in 1.0 M HCl: MD simulations, DFT and complexation computations [J]. Inorg. Chem. Commun., 2020, 115: 107858
52 Padash R, Sajadi G S, Jafari A H, et al. Corrosion control of aluminum in the solutions of NaCl, HCl and NaOH using 2, 6-dimethylpyridine inhibitor: Experimental and DFT insights [J]. Mater. Chem. Phys., 2020, 244: 122681
doi: 10.1016/j.matchemphys.2020.122681
[1] 赵国仙, 刘冉冉, 丁浪勇, 张思琦, 郭梦龙, 王映超. 温度对5Cr钢在模拟油田高温高压环境中CO2 腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2024, 44(1): 175-186.
[2] 王靖羽, 周学杰, 王洪伦, 吴军, 陈昊, 郑鹏华. 碳钢和高强钢在南海大气环境中的初期腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(1): 237-245.
[3] 白雪寒, 丁康康, 张彭辉, 范林, 张慧霞, 刘少通. AH36船用钢海水加速腐蚀试验研究[J]. 中国腐蚀与防护学报, 2024, 44(1): 187-196.
[4] 何逸, 郑传波, 戚浩宇, 刘珍光. TP2紫铜在工业环境中腐蚀行为的研究[J]. 中国腐蚀与防护学报, 2024, 44(1): 71-81.
[5] 常雪婷, 宋嘉琪, 王冰, 王东胜, 陈文聪, 王海丰. 微合金化对高锰奥氏体钢在酸性盐雾环境下的耐蚀性能影响研究[J]. 中国腐蚀与防护学报, 2024, 44(1): 47-58.
[6] 王泉润, 侯进, 侯保荣, 田惠文. 气相缓蚀剂分析方法研究进展[J]. 中国腐蚀与防护学报, 2023, 43(6): 1189-1202.
[7] 王晓, 李明, 刘峰, 王忠平, 李相波, 李宁旺. 温度对B10铜镍合金管冲刷腐蚀行为影响规律研究[J]. 中国腐蚀与防护学报, 2023, 43(6): 1329-1338.
[8] 张勤号, 朱泽洁, 蔡浩冉, 李鑫冉, 孟宪泽, 李昊, 伍廉奎, 罗荘竹, 曹发和. Pt/IrO x -pH超微电化学传感器性能探究及其在铜/不锈钢电偶腐蚀研究中的应用[J]. 中国腐蚀与防护学报, 2023, 43(6): 1264-1272.
[9] 李春霖, 史洪微, 梁国平, 李丽, 王浩, 王伟, 刘福春, 韩恩厚. 高速列车用聚氨酯面漆耐蚀性能和老化机制研究[J]. 中国腐蚀与防护学报, 2023, 43(6): 1383-1391.
[10] 董红梅, 李宝毅, 冉博元, 王琦, 牛宇岚, 丁莉峰, 强玉杰. 一种环保型缓蚀剂利拉利汀对紫铜在硫酸中的缓蚀机理研究[J]. 中国腐蚀与防护学报, 2023, 43(5): 1031-1040.
[11] 刘微. 测量不锈钢电化学噪声的非对称表面方法[J]. 中国腐蚀与防护学报, 2023, 43(5): 1151-1158.
[12] 陈肖寒, 白杨, 王志超, 陈从棕, 张勇, 崔显林, 左娟娟, 王同良. 低表面处理环氧防腐底漆的制备及其耐蚀性研究[J]. 中国腐蚀与防护学报, 2023, 43(5): 1126-1132.
[13] 高秋英, 曾文广, 王恒, 刘元聪, 扈俊颖. 流体冲刷作用对SRB的腐蚀行为影响研究[J]. 中国腐蚀与防护学报, 2023, 43(5): 1087-1093.
[14] 潘代龙, 司晓东, 吕金洪. 流速对碳钢弯管段流动加速腐蚀速率的影响[J]. 中国腐蚀与防护学报, 2023, 43(5): 1064-1070.
[15] 胡杰珍, 上官桔钰, 邓培昌, 冯绮蓝, 王贵, 王沛林. 基于阵列电极技术研究藤壶附着对Q235钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2023, 43(5): 1145-1150.