Please wait a minute...
中国腐蚀与防护学报  2024, Vol. 44 Issue (1): 167-174     CSTR: 32134.14.1005.4537.2023.044      DOI: 10.11902/1005.4537.2023.044
  研究报告 本期目录 | 过刊浏览 |
改性SiO2 气凝胶聚氨酯复合涂层的制备及耐蚀性能研究
李丹鸿, 杨腾逊, 孙天翔, 李兴霖冒, 马程成, 张玥, 陈守刚()
中国海洋大学材料科学与工程学院 青岛 266100
Preparation and Anti-corrosion Properties of Silica Aerogel-modified Polyurethane Composite Coatings
LI Danhong, YANG Tengxun, SUN Tianxiang, LI Xinglinmao, MA Chengcheng, ZHANG Yue, CHEN Shougang()
School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
引用本文:

李丹鸿, 杨腾逊, 孙天翔, 李兴霖冒, 马程成, 张玥, 陈守刚. 改性SiO2 气凝胶聚氨酯复合涂层的制备及耐蚀性能研究[J]. 中国腐蚀与防护学报, 2024, 44(1): 167-174.
Danhong LI, Tengxun YANG, Tianxiang SUN, Xinglinmao LI, Chengcheng MA, Yue ZHANG, Shougang CHEN. Preparation and Anti-corrosion Properties of Silica Aerogel-modified Polyurethane Composite Coatings[J]. Journal of Chinese Society for Corrosion and protection, 2024, 44(1): 167-174.

全文: PDF(7550 KB)   HTML
摘要: 

通过提高SiO2气凝胶的亲水性来提高水性聚氨酯(WPU)涂料的防腐性能。采用脲醛对SiO2气凝胶进行改性,并通过Fourier红外光谱(FTIR)、扫描电子显微镜(SEM)等手段表征气凝胶的结构与微观形貌;通过电化学阻抗(EIS)、附着力实验和盐雾实验等研究了涂层的防腐性能。结果表明,添加亲水改性SiO2气凝胶的涂层的附着力和腐蚀防护性能有明显提高,其中,添加1%亲水改性的SiO2气凝胶涂层的附着力提升36%。在3.5%NaCl溶液中浸泡70 d后涂层的低频阻抗模值超过6 × 107 Ω·cm2,盐雾480 h后没有明显的鼓泡现象。

关键词 SiO2气凝胶水性聚氨酯亲水改性腐蚀防护长效防腐    
Abstract

Waterborne polyurethane (WPU) coating, a new kind of green material due to its excellent wear resistance, flexibility, low-temperature resistance and chemical medium resistance, has been widely attached attention to the field of marine corrosion protection. In this paper, hydrophilic modification of the hydrophobic silica (SiO2) aerogel was carried out by urea aldehyde modification. Then, the unmodified- and modified-SiO2 aerogels as filler were added into the WPU coatings with doses 0.5%, 1% and 2%, respectively, aiming to improve the anti-corrosion properties of WPU coatings. The functional groups and microstructure of SiO2 aerogel were characterized by Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). These results proved that SiO2 aerogel was successfully modified by urea-formaldehyde. The anti-corrosion properties of coatings with different fillers were studied by contact angle test, electrochemical impedance spectroscopy (EIS), adhesion test and salt spray test. The results showed that the adhesion of the coating was significantly improved after adding hydrophilic-modified SiO2 aerogel. When 1% hydrophilic modified SiO2 aerogel was added, the adhesion of the composite coating was improved by 36% correspondingly, the low-frequency impedance modulus of the composite coating increased above 6 × 107 Ω·cm2 after immersion in 3.5% NaCl solution for 70 d. There was no obvious bubbling phenomenon on the surface of the composite coating with 1% hydrophilic modified SiO2 aerogel after the 480 h salt spray testing, which showed its best anti-corrosion performance. Thus, it is concluded that the hydrophilic modification of the hydrophobic SiO2 aerogel by the urea aldehyde modification can improve the dispersibility of the hydrophobic SiO2 aerogel in the WPU coating, the interface compatibility with the coating and the barrier and shielding effect of the SiO2 aerogel on corrosive ions. Furthermore, the corrosion resistance of the WPU coating is improved.

Key wordssilicon dioxide aerogel    waterborne polyurethane    hydrophilic modification    anti-corrosion property    long-term anticorrosion
收稿日期: 2023-02-22      32134.14.1005.4537.2023.044
ZTFLH:  TG174  
基金资助:国家自然科学基金(52371081)
通讯作者: 陈守刚,E-mail:sgchen@ouc.edu.cn,研究方向为海洋新材料及防护
Corresponding author: CHEN Shougang, E-mail: sgchen@ouc.edu.cn
作者简介: 李丹鸿,女,1995年生,硕士生
图1  改性前后SiO2气凝胶的FTIR光谱图
图2  SiO2气凝胶的SEM形貌图、元素映射图和EDS谱图
图3  不同聚氨酯复合涂层的接触角图
图4  不同涂层附着力测试对比图
图5  空白聚氨酯涂层的EIS曲线
图6  添加不同比例未改性SiO2气凝胶涂层的EIS曲线
图7  添加不同比例改性SiO2气凝胶涂层的EIS曲线
图8  涂层的等效电路
Sample

Rc

Ω·cm2

CPE c

Cc

F·cm-2

Rct

Ω·cm2

CPEdl

Cdl

F·cm-2

Yc / F·cm-2·S n-1ncYdl / F·cm-2·S n-1ndl
01.19 × 1032.82 × 10-70.753.09 × 10-88.89 × 1037.50 × 10-240.021.29 × 10-27
1% SiO28.16 × 1048.84 × 10-90.957.35 × 10-92.06 × 1066.87 × 10-80.522.1 × 10-8
1% SiO2 M1.63 × 1071.05 × 10-90.991.05 × 10-94.29 × 1075.95 × 10-90.655.11 × 10-9
表1  浸泡70 d后涂层的EIS拟合电路参数
图9  不同聚氨酯复合涂层20 d盐雾实验后的宏观表面形貌
1 Yu F, Wang X, Zhang Z. Research progress of nanofillers for epoxy anti-corrosion coatings [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 220
1 于 芳, 王 翔, 张 昭. 纳米填料在环氧防腐涂层中的应用研究进展 [J]. 中国腐蚀与防护学报, 2023, 43: 220
2 Yang K, Duan Y X, Liu G C, et al. Smart ZnS@C filler for super-anticorrosive self-healing zinc-rich epoxy coating [J]. Nano Res., 2022, 15: 4756
doi: 10.1007/s12274-022-4161-5
3 Fu Y Q, Wang Z F, Chen S L, et al. Protective effect of impressed current method on Q235A steel in simulated splash zone [J]. Corros. Prot., 2016, 37: 811
3 符耀庆, 王在峰, 陈胜利 等. 外加电流法对Q235A钢在模拟浪花飞溅区的保护效果 [J]. 腐蚀与防护, 2016, 37: 811
4 Guo W Y, Li X Y, Chen M X, et al. Electrochemical cathodic protection powered by triboelectric nanogenerator [J]. Adv. Funct. Mater., 2014, 24: 6691
doi: 10.1002/adfm.v24.42
5 Guo C B, Cao J J, Chen Z Y. Core-shell mesoporous silica-metal-phenolic network microcapsule for the controlled release of corrosion inhibitor [J]. Appl. Surf. Sci., 2022, 605: 154747
doi: 10.1016/j.apsusc.2022.154747
6 Kobzar Y L, Fatyeyeva K. Ionic liquids as green and sustainable steel corrosion inhibitors: recent developments [J]. Chem. Eng. J., 2021, 425: 131480
7 Wang D, Zhao G H, Yang W H, et al. Comparative analysis of corrosion resistance in molten aluminum of H13 Steel with different surface treatments [J]. Heat Treat. Met., 2022, 47(2): 219
doi: 10.13251/j.issn.0254-6051.2022.02.039
7 王 铎, 赵国华, 杨文灏 等. 不同表面处理的H13钢耐铝液腐蚀的对比分析 [J]. 金属热处理, 2022, 47(2): 219
8 Bounab N, Duclaux L, Reinert L, et al. Improvement of zero valent iron nanoparticles by ultrasound-assisted synthesis, study of Cr(VI) removal and application for the treatment of metal surface processing wastewater [J]. J. Environ. Chem. Eng., 2021, 9: 104773
doi: 10.1016/j.jece.2020.104773
9 George J S, Vijayan P P, Hoang A T, et al. Recent advances in bio-inspired multifunctional coatings for corrosion protection [J]. Prog. Org. Coat., 2022, 168: 106858
10 Wang H, Xu J H, Du X S, et al. A self-healing polyurethane-based composite coating with high strength and anti-corrosion properties for metal protection [J]. Composites, 2021, 225B: 109273
11 Liu T, Zhang D W, Ma L W, et al. Smart protective coatings with self-sensing and active corrosion protection dual functionality from pH-sensitive calcium carbonate microcontainers [J]. Corros. Sci., 2022, 200: 110254
12 Yuan S C, Wu Y F, Xu C H, et al. Influence of polyhydroxy hyperdispersant on anti-corrosion property of waterborne epoxy coatings [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 289
12 袁世成, 吴艳峰, 徐长慧 等. 多羟基超分散剂对水性环氧涂层防腐性能的影响 [J]. 中国腐蚀与防护学报, 2023, 43: 289
doi: 10.11902/1005.4537.2022.292
13 Shi Y J, Chen Z H, Yu F. Preparation and performance study of waterborne epoxy anticorrosive coating material [J]. Electroplat. Finish., 2009, 28(4): 45
13 石亚军, 陈中华, 余 飞. 水性环氧防腐涂料的制备与性能研究 [J]. 电镀与涂饰, 2009, 28(4): 45
14 Zeng X G, Gong M, Liu C H, et al. Current status of research on waterborne polyurethane coatings [J]. Electroplat. Finish., 2018, 37: 1060
14 曾宪光, 龚 敏, 刘朝辉 等. 水性聚氨酯涂料的研究现状 [J]. 电镀与涂饰, 2018, 37: 1060
15 Špírková M, Pavličević J, Aguilar Costumbre Y, et al. Novel waterborne poly(urethane-urea)/silica nanocomposites [J]. Polym. Compos., 2020, 41: 4031
doi: 10.1002/pc.v41.10
16 Mariappan T, Kamble A, Naik S M. An investigation of primer adhesion and topcoat compatibility on the waterborne intumescent coating to structural steel [J]. Prog. Org. Coat., 2019, 131: 371
doi: 10.1016/j.porgcoat.2019.03.003
17 Mohammadi A, Doctorsafaei A H, Burujeny S B, et al. Silver(I) complex with a Schiff base ligand extended waterborne polyurethane: a developed strategy to obtain a highly stable antibacterial dispersion impregnated with in situ formed silver nanoparticles [J]. Chem. Eng. J., 2020, 381: 122776
doi: 10.1016/j.cej.2019.122776
18 Zhou X, Song Y H, Wang D, et al. Functional nano-fillers in waterborne polyurethane/acrylic composites and the thermal, mechanical, and dielectrical properties [J]. J. Appl. Polym. Sci., 2021, 138: 50822
doi: 10.1002/app.v138.33
19 Santamaria-Echart A, Fernandes I, Barreiro F, et al. Advances in waterborne polyurethane and polyurethane-urea dispersions and their eco-friendly derivatives: a review [J]. Polymers (Basel), 2021, 13: 409
doi: 10.3390/polym13030409
20 Mirmohseni A, Akbari M, Najjar R, et al. Self-healing waterborne polyurethane coating by pH-dependent triggered-release mechanism [J]. J. Appl. Polym. Sci., 2019, 136: 47082
doi: 10.1002/app.v136.8
21 Zuo S S, Xu H, Peng Z J, et al. Study on epoxy resin-organic silicon composite modified waterborne polyurethane temperature-resistant anticorrosive coating [J]. China Plast. Ind., 2020, 48(4): 53
21 左莎莎, 徐 惠, 彭振军 等. 环氧树脂-有机硅复合改性水性聚氨酯耐温防腐涂料的研究 [J]. 塑料工业, 2020, 48(4): 53
22 Yang Y K, Wang X, Zhao X Y. Functionalization and properties of waterborne polyurethane coatings [J]. Appl. Chem. Ind., 2020, 49: 1039
22 杨玉坤, 王 鑫, 赵雄燕. 水性聚氨酯涂料的功能化及性能 [J]. 应用化工, 2020, 49: 1039
23 Li H, Fan H J, Lin Z X, et al. Research on abrasive resistance and self-matting properties of silicone-modified waterborne polyurethane coating [J]. Paint Coat. Ind., 2022, 52(8): 1
23 李 恒, 范浩军, 林智贤 等. 有机硅改性水性聚氨酯涂层耐磨自消光性能研究 [J]. 涂料工业, 2022, 52(8): 1
24 Wang G L, Yang F X, Chai L, et al. Preparation and properties of SiO2 aerogel thermal insulation packaging material [J]. J. Funct. Mater., 2022, 53: 2087
24 王广林, 杨福馨, 柴 莉 等. SiO2气凝胶隔热保温包装材料的制备及其性能研究 [J]. 功能材料, 2022, 53: 2087
doi: 10.3969/j.issn.1001-9731.2022.02.013
25 Chen Y X, Klima K M, Brouwers H J H, et al. Effect of silica aerogel on thermal insulation and acoustic absorption of geopolymer foam composites: the role of aerogel particle size [J]. Composites, 2022, 242B: 110048
26 He F, Tao Y P, Wu J Y, et al. Surface modification of aerogel microspheres and its effect on thermal insulation coatings [J]. Trans. Mater. Heat Treat., 2014, 35(11): 144
26 何 方, 陶艳平, 吴菊英 等. 气凝胶微球表面改性及对隔热涂料的影响 [J]. 材料热处理学报, 2014, 35(11): 144
27 Lu B, Guo D, Lu F. Study of SiO2 aerogel transparent heat-insulation coatings [J]. Paint Coat. Ind., 2012, 42(6): 15
27 卢 斌, 郭 迪, 卢 峰. SiO2气凝胶透明隔热涂料的研制 [J]. 涂料工业, 2012, 42(6): 15
[1] 顾玉慧, 董亮, 宋沁峰. 微型金属氧化物pH电极的制备及腐蚀防护应用进展[J]. 中国腐蚀与防护学报, 2023, 43(5): 971-982.
[2] 董红梅, 李宝毅, 冉博元, 王琦, 牛宇岚, 丁莉峰, 强玉杰. 一种环保型缓蚀剂利拉利汀对紫铜在硫酸中的缓蚀机理研究[J]. 中国腐蚀与防护学报, 2023, 43(5): 1031-1040.
[3] 倪雨朦, 于英杰, 严慧, 王嵬, 李瑛. 铜铝/镍石墨可磨耗封严涂层相选择性溶解机制有限元研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 855-861.
[4] 文家新, 张欣, 刘云霞, 周永福, 刘克建. 掺杂pH敏感性智能纳米容器BTA@MSNs-SO3H-PDDA碳钢智能防腐涂层的制备及性能研究[J]. 中国腐蚀与防护学报, 2022, 42(2): 309-316.
[5] 李光泉, 李广芳, 王俊强, 张天遂, 张斐, 蒋习民, 刘宏芳. 临海管道微生物腐蚀损伤机制与防护[J]. 中国腐蚀与防护学报, 2021, 41(4): 429-438.
[6] 何静, 杨纯田, 李中. 建筑行业微生物腐蚀与防护研究进展[J]. 中国腐蚀与防护学报, 2021, 41(2): 151-160.
[7] 钱超,云虹,张志国,徐群杰. 纳米ZnS增强聚苯胺复合涂层的性能研究[J]. 中国腐蚀与防护学报, 2016, 36(3): 273-280.
[8] 黄燕滨,宋高伟,刘学斌,丁华东,闫永贵,邵新海. Al-Zn-In-Mg-Ga-Mn牺牲阳极腐蚀防护行为研究[J]. 中国腐蚀与防护学报, 2012, 32(1): 44-47.
[9] 陈群志; 孙祚东; 陆维忠; 韩恩厚; 常铁军; 李京 . SEBF/SLF重腐蚀防护涂层应用于典型飞机结构中防腐性能综合评定[J]. 中国腐蚀与防护学报, 2005, 25(6): 365-368 .