Please wait a minute...
中国腐蚀与防护学报  2024, Vol. 44 Issue (1): 119-129     CSTR: 32134.14.1005.4537.2023.042      DOI: 10.11902/1005.4537.2023.042
  研究报告 本期目录 | 过刊浏览 |
超临界水环境中三种Ni-Cr涂层氧化特性研究
袁小虎1,2, 李定骏2, 王天剑2, 郭显平2, 张乃强3, 朱忠亮3()
1.重庆大学材料科学与工程学院 重庆 400044
2.东方电气集团东方汽轮机有限公司 长寿命高温材料国家重点实验室 德阳 618000
3.华北电力大学 电站能量传递转化与系统教育部重点实验室 北京 102206
Oxidation Behavior of Three Different Ni-Cr Coatings in 630oC/25 MPa Supercritical Water
YUAN Xiaohu1,2, LI Dingjun2, WANG Tianjian2, GUO Xianping2, ZHANG Naiqiang3, ZHU Zhongliang3()
1.School of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
2.State Key Laboratory of Long-Life High Temperature Materials, Dongfang Electric Corporation Dongfang Turbing Co., Ltd., Deyang 618000, China
3.Key Laboratory of Power Station Energy Transfer, Conversion and System, Ministry of Education, North China Electric Power University, Beijing 102206, China
引用本文:

袁小虎, 李定骏, 王天剑, 郭显平, 张乃强, 朱忠亮. 超临界水环境中三种Ni-Cr涂层氧化特性研究[J]. 中国腐蚀与防护学报, 2024, 44(1): 119-129.
Xiaohu YUAN, Dingjun LI, Tianjian WANG, Xianping GUO, Naiqiang ZHANG, Zhongliang ZHU. Oxidation Behavior of Three Different Ni-Cr Coatings in 630oC/25 MPa Supercritical Water[J]. Journal of Chinese Society for Corrosion and protection, 2024, 44(1): 119-129.

全文: PDF(25855 KB)   HTML
摘要: 

开展了汽轮机用FB2钢及3种工艺制备的热喷涂Ni-Cr涂层在630℃/25 MPa超临界水环境氧化实验研究。利用电子天平、SEM、XRD以及XPS对材料的氧化动力学、氧化膜微观形貌、物相成分进行了分析。结果表明:由于实验过程氧化膜发生剥落,FB2钢氧化动力学偏离抛物线规律,而不同工艺制备涂层的氧化动力学严重偏离抛物线规律。FB2材料氧化膜为典型的双层结构,外层富铁由Fe3O4或Fe2O3组成,内层由富铬尖晶石组成;涂层的表面氧化物主要是富铬氧化物。FB2钢和涂层的氧化膜物相成分都随着氧化时间增加而发生变化。同时讨论了FB2材料及3种表面涂层在超临界水中的氧化机理。

关键词 涂层氧化超临界水氧化机理氧化膜    
Abstract

Oxidation behavior of FB2 steel for steam turbine and FB2 steel coated with three different coatings was comparatively investigated in 630oC/25 MPa supercritical water (SCW). The three coatings are supersonic flame spraying Ni-Cr coating (SFS-NiCr), glass shot peened SFS-NiCr and emery belt grinded SFS-NiCr. Their oxidation mass change was intermittently measured by electron balance, while their microstructure and phase composition were characterized by means of SEM, XRD and XPS before and after oxidation test. Results show that the oxidation kinetics curve of FB2 material deviated from the parabola due to the spallation of the formed oxide scale during the oxidation process. The oxidation kinetics curves of coatings prepared by different processes seriously deviated also from the parabola. A double-layered oxide scale formed on FB2 steel, consisting of an Fe-rich outer Fe3O4, Fe2O3 and a Cr-rich inner oxide layer. The oxide scale formed on the three coatings are mainly composed of chromium-rich oxide. The phase composition of the oxide scales formed on FB2 steel and the three coatings changed with the increase of oxidation time. Finally, the oxidation mechanism of FB2 steel and three coatings in supercritical water was discussed.

Key wordscoating    oxidation    supercritical water    oxidation mechanism    oxide film
收稿日期: 2023-02-21      32134.14.1005.4537.2023.042
ZTFLH:  TK245  
基金资助:国家重点研发计划项目(2022YFB4100403)
通讯作者: 朱忠亮,E-mail: zhzl@ncepu.edu.cn,研究方向为超临界水环境下金属材料腐蚀性能
Corresponding author: ZHU Zhongliang, E-mail: zhzl@ncepu.edu.cn
作者简介: 袁小虎,男,1984年生,硕士,高级工程师
图1  630℃超临界水环境下FB2基材及涂层氧化增重与时间关系
图2  原始态喷丸和磨削处理试样表面状态
图3  630℃/25 MPa超临界水中FB2基材、喷涂态、喷丸态以及磨削态NiCr涂层不同氧化时间后的表面形貌
图4  630℃/25 MPa超临界水中FB2钢以及喷涂态、喷丸态和磨削态Ni-Cr涂层氧化100 h后的表面形貌
SampleLocationOCrNiFe
FB2121.4//78.6
247.5//52.5
As-sprayed coating142.918.139/
254.71728.2/
Shot peening treated coating169.117.613.3/
253.621.725.6/
Grinding treated coating153.223.523.3/
247.922.429.7/
表1  FB2基材表面及Ni-Cr涂层不同处理工艺下氧化100 h后氧化膜表面元素含量 (atomic fraction / %)
图5  FB2基材以及喷涂态、喷丸态和磨削态Ni-Cr涂层在630℃/25 MPa超临界水中氧化1000 h后的表面形貌
图6  FB2基材在630℃/25 MPa超临界水中氧化3000 h后的表面形貌
图7  喷涂态、喷丸态以及磨削态Ni-Cr涂层在630℃/25 MPa超临界水中氧化3000 h后的表面形貌
SampleLocationOCrNi
As-sprayed coating163.82313.2
263.517.419.1
Shot peening treated coating17226.71.3
246.419.334.3
Grinding treated coating169.921.98.2
25720.922.2
表2  图7中不同位置处原子分数 (atomic fraction / %)
图8  FB2钢及不同Ni-Cr涂层在630℃超临界水环境中氧化不同时间后的XRD谱
图9  FB2合金在630℃超临界水环境中氧化3000 h后表面XPS谱
图10  不同表面处理Ni-Cr涂层在630℃超临界水环境中氧化3000 h后表面XPS谱
图11  FB2合金及不同Ni-Cr涂层在630℃超临界水环境中氧化3000 h后的横截面形貌及元素分布图
图12  Fe和Cr氧化物在不同温度下的平衡氧分压
1 Zhai X, Hou M J, Yuan Y Q, et al. Key technology of 630oC coal-fired units with over 50% efficiency [J]. Dongfang Turbine, 2021, (4): 35
1 翟 璇, 侯明军, 袁永强 等. 超50%效率的630℃等级燃煤机组关键技术研究 [J]. 东方汽轮机, 2021, (4): 35
2 Lv Z J, Peng J Q, Ju H X, et al. Suggestions for R&D of high temperature rotor forging materials for ultra-supercritical steam turbine in China [J]. Dongfang Turbine, 2018, (4): 56
2 吕振家, 彭建强, 鞠红霞 等. 我国超超临界汽轮机高温转子锻件材料研发建议 [J]. 东方汽轮机, 2018, (4): 56
3 Bischoff J, Motta A T, Eichfeld C, et al. Corrosion of ferritic-martensitic steels in steam and supercritical water [J]. J. Nucl. Mater., 2013, 441: 604
doi: 10.1016/j.jnucmat.2012.09.037
4 Tan L, Ren X, Allen T R. Corrosion behavior of 9-12% Cr ferritic-martensitic steels in supercritical water [J]. Corros. Sci., 2010, 52: 1520
doi: 10.1016/j.corsci.2009.12.032
5 Yin K J, Qiu S Y, Tang R, et al. Corrosion behavior of ferritic/martensitic steel P92 in supercritical water [J]. J. Supercrit. Fluids, 2009, 50: 235
6 Ampornrat P, Was G S. Oxidation of ferritic-martensitic alloys T91, HCM12A and HT-9 in supercritical water [J]. J. Nucl. Mater., 2007, 371: 1
doi: 10.1016/j.jnucmat.2007.05.023
7 Ren X, Sridharan K, Allen T R. Corrosion of ferritic-martensitic steel HT9 in supercritical water [J]. J. Nucl. Mater., 2006, 358: 227
doi: 10.1016/j.jnucmat.2006.07.010
8 Zhu Z L, Xu H, Jiang D F, et al. Influence of temperature on the oxidation behaviour of a ferritic-martensitic steel in supercritical water [J]. Corros. Sci., 2016, 113: 172
doi: 10.1016/j.corsci.2016.10.020
9 Zhang N Q, Zhu Z L, Xu H, et al. Oxidation of ferritic and ferritic-martensitic steels in flowing and static supercritical water [J]. Corros. Sci., 2016, 103: 124
10 Gómez-Briceño D, Blázquez F, Sáez-Maderuelo A. Oxidation of austenitic and ferritic/martensitic alloys in supercritical water [J]. J. Supercrit. Fluids, 2013, 78: 103
doi: 10.1016/j.supflu.2013.03.014
11 Sun L, Yan W P. Calculation and analysis on oxidation rates of ferritic-martensitic steels in supercritical water [J]. J. Chin. Soc. Power Eng., 2018, 38: 156
11 孙 利, 阎维平. 超临界水工况下铁素体马氏体钢氧化速率常数的计算方法与分析 [J]. 动力工程学报, 2018, 38: 156
12 Xu H, Yuan J, Zhu Z L, et al. Oxidation behavior of ferritic-martensitic steel P92 exposed to supercritical water at 600oC/25 MPa [J]. J. Chin. Soc. Corros. Prot., 2014, 34: 119
12 徐 鸿, 袁 军, 朱忠亮 等. 铁素体-马氏体P92钢在600oC/25MPa超临界水中的氧化特性 [J]. 中国腐蚀与防护学报, 2014, 34: 119
13 Ma Y H. Study on steam oxidation resistance of Al-based and Ni-Cr-based coatings [J]. J. Chin. Soc. Power Eng., 2019, 39: 504
13 马云海. Al基涂层和Ni-Cr基涂层抗蒸汽氧化性能研究 [J]. 动力工程学报, 2019, 39: 504
14 Ren X, Sridharan K, Allen T R. Corrosion of ferritic-martensitic steel HT9 in supercritical water [J]. J. Nucl. Mater., 2006, 358: 227
doi: 10.1016/j.jnucmat.2006.07.010
15 Chen Y, Sridharan K, Allen T. Corrosion behavior of ferritic-martensitic steel T91 in supercritical water [J]. Corros. Sci., 2006, 48: 2843
doi: 10.1016/j.corsci.2005.08.021
16 Zhu Z L, Xu H, Jiang D F, et al. Influence of temperature on the oxidation behaviour of a ferritic-martensitic steel in supercritical water [J]. Corros. Sci., 2016, 113: 172
17 Zhu Z L, Xu H, Jiang D F, et al. Temperature dependence of oxidation behaviour of a ferritic-martensitic steel in supercritical water at 600~700oC [J]. Oxid. Met., 2016, 86: 483
doi: 10.1007/s11085-016-9647-7
18 Zhang N Q, Zhu Z L, Xu H, et al. Oxidation of ferritic and ferritic-martensitic steels in flowing and static supercritical water [J]. Corros. Sci., 2016, 103: 124
doi: 10.1016/j.corsci.2015.10.017
19 Zhang N Q, Xu H, Li B R, et al. Influence of the dissolved oxygen content on corrosion of the ferritic-martensitic steel P92 in supercritical water [J]. Corros. Sci., 2012, 56: 123
doi: 10.1016/j.corsci.2011.11.013
20 Tan L, Ren X, Allen T R. Corrosion behavior of 9-12% Cr ferritic-martensitic steels in supercritical water [J]. Corros. Sci., 2010, 52: 1520
21 Bischoff J, Motta A T, Eichfeld C, et al. Corrosion of ferritic-martensitic steels in steam and supercritical water [J]. J. Nucl. Mater., 2013, 441: 604
doi: 10.1016/j.jnucmat.2012.09.037
22 Birks N, Meier G H, Pettit F S. Introduction to the High Temperature Oxidation of Metals [M]. Cambridge: Cambridge University Press, 2006
23 Sennour M, Marchetti L, Martin F, et al. A detailed TEM and SEM study of Ni-base alloys oxide scales formed in primary conditions of pressurized water reactor [J]. J. Nucl. Mater., 2010, 402: 147
doi: 10.1016/j.jnucmat.2010.05.010
24 Tawancy H M, Ul-Hamid A, Abbas N M. Practical Engineering Failure Analysis [M]. New York: Marcel Dekker, 2004: 381
25 Zhong X Y, Han E H, Wu X Q. Corrosion behavior of alloy 690 in aerated supercritical water [J]. Corros. Sci., 2013, 66: 369
doi: 10.1016/j.corsci.2012.10.001
26 Zhang Q, Tang R, Yin K J, et al. Corrosion behavior of Hastelloy C-276 in supercritical water [J]. Corros. Sci., 2009, 51: 2092
doi: 10.1016/j.corsci.2009.05.041
27 Zhu Z L, Ma C H, Li Y Y, et al. Oxidation behavior of Nickel-based alloy Inconel617B in supercritical water at 700oC [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 655
27 朱忠亮, 马辰昊, 李宇旸 等. 镍基合金Inconel617B在700℃超临界水环境中的氧化行为研究 [J]. 中国腐蚀与防护学报, 2022, 42: 655
doi: 10.11902/1005.4537.2021.145
28 He N K, Wang Y X, Zhou S G, et al. Oxidation behavior in water vapor and tribological property in atmosphere with 60% relative humidity at 580oC for Inconel 718 alloy [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 271
28 贺南开, 王永欣, 周升国 等. Inconel 718合金在580℃下水蒸气环境中的氧化行为及摩擦学性能 [J]. 中国腐蚀与防护学报, 2023, 43: 271
doi: 10.11902/1005.4537.2022.069
29 Wagner C. Theoretical analysis of the diffusion processes determining the oxidation rate of alloys [J]. J. Electrochem. Soc., 1952, 99: 369
doi: 10.1149/1.2779605
30 Viswanathan R. Advances in materials technology for fossil power plants [M]. marco island, florida, USA: ASM International, 2008
31 Dong Z Q, Liu Z, Li M, et al. Effect of ultrasonic impact peening on the corrosion of ferritic-martensitic steels in supercritical water [J]. J. Nucl. Mater., 2015, 457: 266
doi: 10.1016/j.jnucmat.2014.11.028
[1] 姜伯晨, 类延华, 张玉良, 李晓峰, 刘涛, 董丽华. 功能性超疏水涂层在极地抗冰领域的应用研究进展[J]. 中国腐蚀与防护学报, 2024, 44(1): 1-14.
[2] 蒋光锐, 刘广会, 商婷. 热处理对ZnAlMg镀层组织与耐腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2024, 44(1): 246-254.
[3] 李建呈, 赵京, 谢新, 王金龙, 陈明辉, 王福会. 钛合金表面磷酸盐涂层的制备及在高温盐-水蒸气环境中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(1): 159-166.
[4] 王爽, 王资兴, 程晓农, 罗锐. 稀土La对钴基高温合金GH51881100℃下空气中氧化行为的影响[J]. 中国腐蚀与防护学报, 2024, 44(1): 221-228.
[5] 冯抗抗, 任延杰, 吕云蕾, 周梦妮, 陈荐, 牛焱. Si含量对四元Fe-20Ni-20Cr-ySi合金在900℃下氧化行为的影响[J]. 中国腐蚀与防护学报, 2024, 44(1): 100-106.
[6] 任岩, 张鑫涛, 盖欣, 徐敬军, 张伟, 陈勇, 李美栓. 四元MAX(Cr2/3Ti1/3)3AlC2 在高温空气以及水蒸气气氛中的氧化行为研究[J]. 中国腐蚀与防护学报, 2023, 43(6): 1284-1292.
[7] 凡玉方, 张亚飞, 尹刘森, 赵聪慧, 何艳宾, 张传祥. 碳点在金属防腐领域中的研究进展[J]. 中国腐蚀与防护学报, 2023, 43(6): 1237-1246.
[8] 於琛钧, 张天翼, 张乃强, 朱忠亮. 组织老化对P92钢在超临界水中氧化行为影响研究[J]. 中国腐蚀与防护学报, 2023, 43(6): 1349-1357.
[9] 曲卫卫, 陈泽浩, 裴延玲, 李树索, 王福会. CMAS熔体在不同热障涂层用材料表面的铺展和腐蚀行为[J]. 中国腐蚀与防护学报, 2023, 43(6): 1407-1412.
[10] 田光元, 严程铭, 杨智皓, 王俊升. 耐腐蚀Mg-Li合金的腐蚀与防护及其性能研究进展[J]. 中国腐蚀与防护学报, 2023, 43(6): 1255-1263.
[11] 张凯丽, 都俐俐, 谭军, 刘祥周, 马骥, 邱萍. 珊瑚簇状SiO2 超滑防腐涂层的制备及性能研究[J]. 中国腐蚀与防护学报, 2023, 43(6): 1319-1328.
[12] 肖文涛, 刘静, 彭晶晶, 张弦, 吴开明. 两种电弧喷涂涂层在中性盐雾环境下的耐蚀性能对比研究[J]. 中国腐蚀与防护学报, 2023, 43(5): 1003-1014.
[13] 轩星雨, 屈少鹏, 赵行娅. CeO2@MWCNTs/EP复合涂层的制备与性能研究[J]. 中国腐蚀与防护学报, 2023, 43(5): 992-1002.
[14] 顾玉慧, 董亮, 宋沁峰. 微型金属氧化物pH电极的制备及腐蚀防护应用进展[J]. 中国腐蚀与防护学报, 2023, 43(5): 971-982.
[15] 王军阳, 易戈文, 万善宏, 姜军. 钢材表面氧化铁皮结构演变机理与应用控制技术研究进展[J]. 中国腐蚀与防护学报, 2023, 43(5): 948-956.