Please wait a minute...
中国腐蚀与防护学报  2024, Vol. 44 Issue (1): 71-81     CSTR: 32134.14.1005.4537.2023.038      DOI: 10.11902/1005.4537.2023.038
  研究报告 本期目录 | 过刊浏览 |
TP2紫铜在工业环境中腐蚀行为的研究
何逸1, 郑传波1,2(), 戚浩宇2, 刘珍光2
1.江苏科技大学冶金工程学院 苏州 215000
2.江苏科技大学材料科学与工程学院 镇江 212000
Corrosion Behavior of TP2 Red Copper in Simulated Organic Acids Containing Industrial Environments
HE Yi1, ZHENG Chuanbo1,2(), QI Haoyu2, LIU Zhenguang2
1.School of Metallurgy Engineering, Jiangsu University of Science and Technology, Suzhou 215000, China
2.School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212000, China
引用本文:

何逸, 郑传波, 戚浩宇, 刘珍光. TP2紫铜在工业环境中腐蚀行为的研究[J]. 中国腐蚀与防护学报, 2024, 44(1): 71-81.
Yi HE, Chuanbo ZHENG, Haoyu QI, Zhenguang LIU. Corrosion Behavior of TP2 Red Copper in Simulated Organic Acids Containing Industrial Environments[J]. Journal of Chinese Society for Corrosion and protection, 2024, 44(1): 71-81.

全文: PDF(25399 KB)   HTML
摘要: 

通过结合表征测试、腐蚀失重测试以及电化学测试方法,并模拟TP2紫铜在工业生产中的环境,以分析材料在工业环境中的腐蚀行为。结果表明,与乙酸气氛相比,TP2铜在含有甲酸的腐蚀性气氛的作用下表现出更严重的腐蚀倾向,并且有机酸浓度的增加使材料的腐蚀更加严重。此外,有机酸大气和SO2污染物的结合对TP2紫铜表面造成了更严重的破坏,SO2污染物含量的增加也使情况变得更为严重。与乙酸气氛和SO2污染物的组合相比,甲酸气氛和SO2污染物的组合对TP2紫铜表面表现出严重而复杂的腐蚀行为。

关键词 TP2紫铜有机酸SO2污染物电化学行为    
Abstract

With excellent electrical and thermal conductivity, TP2 copper has a wide range of applications in industrial production process. During the practical production process, a large amount of organic acid pollutants containing carboxylic acid ions will be generated. Meanwhile, as a result of the defects of TP2 copper and the impact of moisture and corrosive media in the external environment, the content of organic acid pollutants in operating ambient of TP2 copper is at the high level, which may accelerate the occurrence of organic acid corrosion on the surface of TP2 copper. In order to simulate the organic acids induced corrosion behavior of TP2 copper in industrial environments, the TP2 copper was assessed via immersion tests in solutions with different organic acid concentrations temperature-cyclically, by means of measurements of mass loss Tafel polarization and electrochemical impedance, as well as SEM characterization. The results show that in comparison to the acetic acid containing atmosphere, TP2 copper exhibits stronger corrosion tendency in the formic acid containing ones, while the higher the organic acid concentration, the much severe the corrosion of the TP2 copper. In addition, the combination of the organic acid containing atmosphere and SO2 pollutants may cause much severe corrosion damage of the TP2 copper surface, and the higher content of the SO2 pollutants, the severe the corrosive conditions. Besides, much severe corrosion and complexity of the corrosion behavior emerged on the surface of the TP2 copper in the atmosphere of co-existance of SO2 pollutants and with formic acid rather than that with acedic acid.

Key wordsTP2 copper    organic acids    SO2 contaminants    electrochemical behavior
收稿日期: 2023-02-19      32134.14.1005.4537.2023.038
ZTFLH:  TG174  
通讯作者: 郑传波,E-mail: just202206@yeah.com,研究方向为金属材料腐蚀防护机理、电化学、钢结构腐蚀安全性评价和寿命预测
Corresponding author: ZHENG Chuanbo, E-mail: just202206@yeah.com
作者简介: 何 逸,男,2003年生,本科生
图1  TP2紫铜在浓度为1%、4%、7%和10%的甲酸气氛中的SEM像
图2  TP2紫铜在浓度为1%、4%、7%和10%的乙酸气氛中的SEM像
Corrosion mediumConcentrationMass loss / gCorrosion rate / mm·a-1
Formic acid1%0.00670.0963
0.0074
4%0.01290.1859
0.0143
7%0.01980.2761
0.0206
10%0.02540.3383
0.0241
Acetic acid1%0.0450.0724
0.0061
4%0.01130.1619
0.0124
7%0.01450.2098
0.0162
10%0.02030.2884
0.0219
表1  有机酸环境中暴露30 d后的紫铜试样腐蚀速率结果
图3  TP2紫铜分别在不同浓度的甲酸和乙酸气氛中的失重变化趋势图
图4  在有机酸环境中TP2紫铜在不同浓度的甲酸和乙酸气氛中暴露30 d后的的Tafel极化曲线图
图5  TP2紫铜在不同浓度的甲酸和乙酸溶液中暴露30 d后的紫铜的自腐蚀电流变化趋势图
图6  TP2紫铜分别在不同浓度的甲酸和乙酸溶液中暴露30 d后的电化学阻抗谱图及其对应等效电路图
图7  TP2紫铜在不同浓度的甲酸,乙酸中暴露30 d后的Rct数值随有机酸浓度变化趋势图
图8  TP2紫铜在不同Na2SO4浓度的甲酸气氛中暴露15 d后的SEM像
图9  TP2紫铜在不同Na2SO4浓度的乙酸气氛中暴露15 d后的SEM像
Corrosion mediumNa2SO4 concentration / mol·L-1Mass loss / gCorrosion rate / mm·a-1
Formic acid0.010.00830.1052
0.0071
0.030.01010.1462
0.0113
0.050.01590.2057
0.0142
0.10.02060.2898
0.0218
Acetic acid0.010.00510.0773
0.0063
0.030.00620.0923
0.0074
0.050.01010.1305
0.0090
0.10.01450.1934
0.0138
表2  紫铜在含Na2SO4的有机酸环境暴露30 d后的腐蚀速率结果
图10  TP2紫铜分别在甲酸及乙酸气氛中不同Na2SO4浓度暴露30 d后的腐蚀失重变化曲线
图11  TP2紫铜分别在甲酸及乙酸气氛中添加不同Na2SO4浓度中暴露30 d后的Tafel极化曲线
图12  TP2紫铜分别在甲酸及乙酸气氛中添加不同Na2SO4浓度中暴露30 d后的自腐蚀电流密度变化曲线
图13  TP2紫铜在甲酸和乙酸中添加不同浓度的Na2SO4中暴露30 d后的阻抗谱图及其对应的等效电路图
图14  紫铜在甲酸,乙酸中暴露30 d后Rct随Na2SO4浓度变化趋势图
1 Lu X Y, Feng X G, Zuo Y, et al. Improvement of protection performance of Mg-rich epoxy coating on AZ91D magnesium alloy by DC anodic oxidation [J]. Prog. Org. Coat., 2017, 104: 188
2 Zheng C B, Yi G. Investigating the influence of hydrogen on stress corrosion cracking of 2205 duplex stainless steel in sulfuric acid by electrochemical impedance spectroscopy [J]. Corros. Rev., 2017, 35: 23
doi: 10.1515/corrrev-2016-0060
3 Han R Z, Jia J W, Li Y, et al. Corrosion behavior of three super austenitic stainless steels in a molten salts mixture at 650~750oC [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 421
3 韩瑞珠, 贾建文, 李 阳 等. 超级奥氏体不锈钢的热腐蚀行为及机理研究 [J]. 中国腐蚀与防护学报, 2023, 43: 421
doi: 10.11902/1005.4537.2022.115
4 Duan T G, Li Z, Peng W S, et al. Corrosion characteristics of 5A06 Al-alloy exposed in natural deep-sea environment [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 352
4 段体岗, 李 祯, 彭文山 等. 深海环境5A06铝合金腐蚀行为与表面特性 [J]. 中国腐蚀与防护学报, 2023, 43: 352
doi: 10.11902/1005.4537.2022.102
5 Zuo X D, Zhu Z P, Cao J, et al. Corrosion behavior of copper in cyclic dry-wet environment with gas mixture of SO2 and H2S [J]. Corros. Sci. Prot. Technol., 2017, 29: 521
5 左羡第, 朱志平, 曹 颉 等. 干湿交替环境中SO2和H2S混合气体对紫铜T2的腐蚀行为研究 [J]. 腐蚀科学与防护技术, 2017, 29: 521
6 Shinato K W, Zewde A A, Jin Y. Corrosion protection of copper and copper alloys in different corrosive medium using environmentally friendly corrosion inhibitors [J]. Corros. Rev., 2020, 38: 101
doi: 10.1515/corrrev-2019-0105
7 Wang Y, Xu W C, Jiang Q T, et al. Corrosion behavior of purple copper and brass H62 in real sea navigation marine atmosphere [A]. 2020 7th Conference on Marine Materials and Corrosion Protection and 2020 1st Conference on Durability of Reinforced Concrete and Safety of Facilities in Service [C]. Wuxi, 2020: 130
7 王 盈, 徐玮辰, 蒋全通 等. 紫铜与黄铜H62在实海航行海洋大气中的腐蚀行为研究 [A]. 2020第七届海洋材料与腐蚀防护大会暨2020第一届钢筋混凝土耐久性与设施服役安全大会摘要集 [C]. 无锡, 2020: 130
8 Kong D C, Dong C F, Ni X Q, et al. Insight into the mechanism of alloying elements (Sn, Be) effect on copper corrosion during long-term degradation in harsh marine environment [J]. Appl. Surf. Sci., 2018, 455: 543
9 Wang B Q, Zhang X L, Yong X Y, et al. Numerical simulation of galvanic corrosion of TP2Y copper pipes coupled with steel pipes in a seawater pipe systems of ships [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 200
9 王炳钦, 张晓莲, 雍兴跃 等. 舰船海水管系中紫铜/钢制管道耦接后电偶腐蚀的数值模拟研究 [J]. 中国腐蚀与防护学报, 2022, 42: 200
doi: 10.11902/1005.4537.2021.044
10 Huang H L, Pan Z Q, Guo X P, et al. Effect of an alternating electric field on the atmospheric corrosion behaviour of copper under a thin electrolyte layer [J]. Corros. Sci., 2013, 75: 100
doi: 10.1016/j.corsci.2013.05.019
11 Li H T, Chen Z Y, Liu X C, et al. Study on the mechanism of the photoelectrochemical effect on the initial NaCl-induced atmospheric corrosion process of pure copper exposed in Humidified Pure Air [J]. J. Electrochem. Soc., 2018, 165: C608
doi: 10.1149/2.0771810jes
12 Wu T Q, Zhou Z F, Xu S, et al. A corrosion failure analysis of copper wires used in outdoor terminal boxes in substation [J]. Eng. Fail. Anal., 2019, 98: 83
doi: 10.1016/j.engfailanal.2019.01.070
13 Tan Y T, Liu X X, Ma L R, et al. The effect of hematite on the corrosion behavior of copper in saturated red soil solutions [J]. J. Mater. Eng. Perform., 2020, 29: 2324
doi: 10.1007/s11665-020-04741-w
14 Pei F, Liu G M, Liu X, et al. Galvanic corrosion behavior of Q235 steel-red copper in acid red soil of different water content [J]. Surf. Technol., 2017, 46: 240
14 裴 锋, 刘光明, 刘 欣 等. 不同湿度的酸性红壤中Q235钢-紫铜电偶腐蚀行为研究 [J]. 表面技术, 2017, 46: 240
15 Li B, Luo X G, Tang Y J, et al. Corrosion behavior of the dominant actinomycetes in soil on copper [J]. J. Chin. Soc. Corros. Prot., 2015, 35: 345
15 李 波, 罗学刚, 唐永金 等. 土壤优势放线菌菌群对紫铜的腐蚀 [J]. 中国腐蚀与防护学报, 2015, 35: 345
16 Gao Y B, Du X G, Wang Q W, et al. Corrosion behavior of copper in a simulated grounding condition in electric power grid [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 435
16 高义斌, 杜晓刚, 王启伟 等. 铜在电网接地工况下的腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2023, 43: 435
doi: 10.11902/1005.4537.2022.098
17 Wu L, Ma A L, Zhang L M, et al. Intergranular erosion corrosion of pure copper tube in flowing NaCl solution [J]. Corros. Sci., 2022, 201: 110304
doi: 10.1016/j.corsci.2022.110304
18 Liu X, Li H H, Zhao X J, et al. Comparison of the corrosion behavior of copper tubes in formic acid and acetic acid environment [J]. Mater. Corros., 2021, 72: 1919
19 Sowards J W, Mansfield E. Corrosion of copper and steel alloys in a simulated underground storage-tank sump environment containing acid-producing bacteria [J]. Corros. Sci., 2014, 87: 460
doi: 10.1016/j.corsci.2014.07.009
20 Li H H, Liu X, Li D S, et al. An investigation on the mechanisms of ant nest corrosion of copper tube in formic acid environment [J]. Mater. Corros., 2023, 74: 138
21 Zhou J X, Yan L, Tang J, et al. Interactive effect of ant nest corrosion and stress corrosion on the failure of copper tubes [J]. Eng. Fail. Anal., 2018, 83: 9
22 Zhang Z X, Zheng C B, Yi G, et al. Investigation on the electrochemical corrosion behavior of TP2 copper and influence of BTA in organic acid environment [J]. Metals, 2022, 12:1629
doi: 10.3390/met12101629
23 Sasaki T, Itoh J, Horiguchi Y, et al. Quantitative determination of corrosion products and adsorbed water on copper in humid air containing SO2 by IR-RAS measurements [J]. Corros. Sci., 2006, 48: 4339
doi: 10.1016/j.corsci.2006.03.016
24 Vogel G. Creeping corrosion of copper on printed circuit board assemblies [J]. Microelectron. Reliab., 2016, 64: 650
doi: 10.1016/j.microrel.2016.07.043
25 Demirkan K, Derkits G E, Fleming D A, et al. Corrosion of Cu under Highly Corrosive Environments [J]. J. Electrochem. Soc., 2010, 157: C30
26 Bernardi E, Chiavari C, Martini C, et al. The atmospheric corrosion of quaternary bronzes: an evaluation of the dissolution rate of the alloying elements [J]. Appl. Phys., 2008, 92A: 83
27 Liu W, Jiang Y K, Ge H H. Comparison of electrochemical corrosion behavior of copper in liquid film in atmosphere containing SO2 or H2S [J]. Corros. Prot., 2015, 36: 934
27 刘 伟, 蒋以奎, 葛红花. 大气环境中SO2和H2S对铜的电化学腐蚀行为比较 [J]. 腐蚀与防护, 2015, 36: 934
28 Jiang Y, He Y H. Electrochemical corrosion behavior of micrometer-sized porous Ti3SiC2 compounds in NaCl solution [J]. Mater. Corros., 2020, 71: 54
doi: 10.1002/maco.201911051
[1] 白雪寒, 丁康康, 张彭辉, 范林, 张慧霞, 刘少通. AH36船用钢海水加速腐蚀试验研究[J]. 中国腐蚀与防护学报, 2024, 44(1): 187-196.
[2] 李晗, 刘元海, 赵连红, 崔中雨. 300M超高强度钢在模拟海洋环境中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43(1): 87-94.
[3] 王腾宇, 张正贵, 陆卫中, 吴希革. 交变压力对无溶剂环氧涂层在模拟超深海环境下的电化学行为[J]. 中国腐蚀与防护学报, 2022, 42(6): 929-938.
[4] 林朝晖, 明南希, 何川, 郑平, 陈旭. 静水压力对X70钢在海洋环境中腐蚀行为影响研究[J]. 中国腐蚀与防护学报, 2021, 41(3): 307-317.
[5] 张腾, 刘静, 黄峰, 胡骞, 戈方宇. 交变应力频率对E690钢在3.5%NaCl溶液中腐蚀电化学行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(2): 226-232.
[6] 赵洪涛,陆卫中,李京,郑玉贵. 无溶剂环氧防腐涂层在模拟海水冲刷条件下的电化学行为[J]. 中国腐蚀与防护学报, 2016, 36(4): 295-305.
[7] 孟向楠,陈旭,吴明,赵阳,范裕文. 静水压力对X100钢在NaHCO3+NaCl溶液中电化学行为的影响[J]. 中国腐蚀与防护学报, 2016, 36(3): 219-224.
[8] 袁玮, 黄峰, 胡骞, 刘静, 侯震宇. 外加拉应力对X80管线钢点蚀电化学行为的影响[J]. 中国腐蚀与防护学报, 2013, 33(4): 277-282.
[9] 熊媛媛 张 娅 胡少峰 陈秋荣, 谢有桃. 添加剂La(CH3COO)3和NaF对AZ31在
Mg(ClO4)2溶液中电化学性能的影响
[J]. 中国腐蚀与防护学报, 2013, 33(3): 241-244.
[10] 王石青 何德良 丁庆云 徐以兵 高 娟 区永康. 模数对水性硅酸钾富锌涂层电化学行为的影响[J]. 中国腐蚀与防护学报, 2008, 28(6期): 359-362.
[11] 吴俊升; 李晓刚; 公铭扬; 李磊; 王博 . 己内酰胺精制薄膜蒸发器腐蚀失效分析[J]. 中国腐蚀与防护学报, 2007, 27(3): 181-185 .
[12] 刘斌; 齐公台; 冉伟; 赵婷婷 . 模拟偏析相Al2Zn在3%NaCl溶液中的电化学行为[J]. 中国腐蚀与防护学报, 2007, 27(2): 93-96 .
[13] 刘斌; 李瑛; 王福会 . 锌粉颜料尺寸对有机富锌涂层电化学行为的影响[J]. 中国腐蚀与防护学报, 2003, 23(6): 350-354 .
[14] 齐公台; 屈钧娥; 廖海星 . 含RE铝阳极中析出相的电化学行为研究[J]. 中国腐蚀与防护学报, 2003, 23(6): 355-358 .