Please wait a minute...
中国腐蚀与防护学报  2024, Vol. 44 Issue (1): 175-186     CSTR: 32134.14.1005.4537.2023.036      DOI: 10.11902/1005.4537.2023.036
  研究报告 本期目录 | 过刊浏览 |
温度对5Cr钢在模拟油田高温高压环境中CO2 腐蚀行为的影响
赵国仙1, 刘冉冉1(), 丁浪勇1, 张思琦2, 郭梦龙2, 王映超1
1.西安石油大学材料科学与工程学院 西安 710065
2.西安摩尔石油工程实验室股份有限公司 西安 710065
Effect of Temperature on CO2-inducedCorrosion Behavior of 5Cr Steel in a Simulated Oilfield Produced High-temperature and High-pressured Water
ZHAO Guoxian1, LIU Ranran1(), DING Langyong1, ZHANG Siqi2, GUO Menglong2, WANG Yingchao1
1.School of Material Science and Technology, Xi'an Shiyou University, Xi'an 710065, China
2.Xi'an Maurer Petroleum Engineering Laboratory, Co. Ltd., Xi'an 710065, China
引用本文:

赵国仙, 刘冉冉, 丁浪勇, 张思琦, 郭梦龙, 王映超. 温度对5Cr钢在模拟油田高温高压环境中CO2 腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2024, 44(1): 175-186.
Guoxian ZHAO, Ranran LIU, Langyong DING, Siqi ZHANG, Menglong GUO, Yingchao WANG. Effect of Temperature on CO2-inducedCorrosion Behavior of 5Cr Steel in a Simulated Oilfield Produced High-temperature and High-pressured Water[J]. Journal of Chinese Society for Corrosion and protection, 2024, 44(1): 175-186.

全文: PDF(14214 KB)   HTML
摘要: 

采用丝束电极技术、形貌表征和EIS测试相结合,研究5Cr钢在不同温度条件下的CO2腐蚀特性。利用XRD、SEM和EDS等技术表征不同条件下腐蚀产物,利用高温高压电化学中阻抗测试技术对5Cr钢CO2腐蚀行为进行研究,并采用丝束电极(WBE)技术分析腐蚀产物/金属界面局部腐蚀电位、腐蚀电流的分布规律。结果表明,电极腐蚀电位整体随腐蚀温度的增加有不同程度的负移,5Cr钢发生腐蚀的倾向增加,腐蚀速率随温度的增加而变大。5Cr钢的电化学阻抗谱中形成半径较大的容抗弧,腐蚀产物膜覆盖程度和致密性增加,等效电路中电荷传递电阻呈变大趋势,电化学反应阻力明显增加。5Cr钢表面局部阳极区形成、扩展使其有产生点蚀的倾向,且形成于腐蚀初期产物膜空隙通道处。腐蚀产物逐渐沉积在点蚀坑内壁,在坑内壁形成了有明显的Cr富集的保护性表面层,原发生点蚀区域由原阳极活性点位转变为阴极区,对其发展起抑制作用。被腐蚀产物膜覆盖下的5Cr钢区域电流发生由阴极向阳极的极性转变现象,产物膜存在孔隙使得5Cr钢基体金属被腐蚀,从而导致阳极电流的出现。

关键词 5Cr钢CO2腐蚀高温高压电化学电化学阻抗谱丝束电极    
Abstract

The CO2-induced corrosion of 5Cr steel in a magnetically driven autoclave with a simulated oilfield produced water at different temperatures and pressures was assessed by means of XRD, SEM and EDS as well as electrochemical measurement and wire beam electrode (WBE) technique. The results show that with the increasing temperature, the corrosion potential of the electrode as a whole has different degrees of negative shift, the corrosion tendency and the corrosion rate of 5Cr steel all increase; meanwhile, the capacitive impedance arc with a large radius emerged in the electrochemical impedance spectrum of 5Cr steel, the film coverage degree and compactness of the corrosion product increase, the charge transfer resistance tends to increase, and the resistance of the electrochemical reaction increases significantly. The formation and expansion of the local anode area on the surface of 5Cr steel has the tendency to cause pitting corrosion, which may be preferred to form at defects on the film formed in the early stage of corrosion. The corrosion products are gradually deposited on the inner wall of the pit, then a protective surface layer with obvious Cr enrichment is formed on the inner wall of the pit, thereby, the original pitting corrosion area is transformed from the active sites on the original anode to the cathode area, therefore, the pitting expansion is inhibited. The polar transformation phenomenon of the corrosion current of the local sites of the 5Cr steel beneath the corrosion product film occurs, namely, from cathodic ones turn to anodic ones, and the defects in the corrosion product film make the 5Cr steel substrate corroded, resulting in the appearance of anodic current.

Key words5Cr Steel    CO2 corrosion    high temperature and high pressure electrochemistry    electrochemical impedance spectroscopy    wire beam electrode
收稿日期: 2023-02-18      32134.14.1005.4537.2023.036
ZTFLH:  TG174  
通讯作者: 刘冉冉,E-mail:1970242833@qq.com,研究方向为材料腐蚀与防护
Corresponding author: LIU Ranran, E-mail: 1970242833@qq.com
作者简介: 赵国仙,女,1968年生,博士,教授
图1  电化学测试装置及其丝束电极结构示意图
图2  5Cr钢在不同温度的均匀腐蚀速率、最大点蚀速率及点蚀坑微观形貌
图3  5Cr钢在不同温度下模拟采出水中浸泡14 d后的表面微观形貌
图4  5Cr钢在不同温度下模拟采出水中浸泡14 d后的表面EDS分析区域
Temperature / oCScan areaCOSClCaCrFe
5015.4645.071.683.046.5029.085.23
27.6642.101.982.686.7127.407.63
7017.9037.264.151.2614.2720.6712.16
22.183.660.240.040.245.9786.79
9017.2241.022.172.4511.0420.1112.65
211.1854.090.900.5727.622.392.13
表1  图4中不同样品表面标记区域EDS分析结果 (mass fraction / %)
图5  5Cr钢在不同温度下模拟采出水中浸泡14 d后的腐蚀坑截面形貌
Temperature / oCScan areaCOSClCaCrFe
50145.8338.85//0.260.732.40
218.6312.140.430.220.916.2660.52

70

114.4537.310.460.667.1130.547.48
220.2446.180.181.205.2421.325.15
326.1339.710.221.083.9515.5213.19
90111.2237.641.746.431.3014.3726.82
25.5934.781.566.601.6019.0130.53
表2  5Cr钢在不同温度下腐蚀坑形貌的EDS分析结果 (mass fraction / %)
图6  5Cr钢在不同温度下模拟采出水中浸泡14 d后的截面元素分布图
图7  5Cr钢在不同温度下模拟采出水中浸泡14 d后的XRD谱
图8  5Cr钢在不同温度下浸泡不同时间后的Nyquist和Bode图
图9  5Cr钢在3种温度下浸泡不同时间的阻抗谱拟合等效电路

Time

d

Rs

Ω·cm2

Cf

μF·cm-2

Rt

Ω·cm2

Ydl

S·s n ·cm-2

ndl

Rc

Ω·cm2

00.71853.261.9441.342 × 10-40.6747424.3
11.26233.2142.1806.043 × 10-40.74611986.0
31.08946.7828.8801.077 × 10-40.73262133.0
71.37637.3042.1905.963 × 10-40.76371740.0
129.23272.1491.4802.330 × 10-40.81622976.0
1410.95085.26120.002.270 × 10-40.83182982.0
表3  5Cr钢在50℃下浸泡不同时间后阻抗谱拟合结果

Time

d

Rs

Ω·cm2

Cf

μF·cm-2

Rt

Ω·cm2

Yf

S·s n ·cm-2

nf

Ydl

S·s n ·cm-2

ndl

Rc

Ω·cm2

00.70848.8826.61//1.026 × 10-40.6746627.2
11.01239.6163.10//1.140 × 10-40.70222136.0
31.39925.2362.71//2.191 × 10-40.72692384.0
712.545/59.442.811 × 10-40.70952.667 × 10-40.72865673.0
1210.320/59.613.020 × 10-40.75033.019 × 10-40.75045662.0
1411.200/70.804.242 × 10-40.77804.229 × 10-40.77905394.0
表4  5Cr钢在70℃下浸泡不同时间后阻抗谱拟合结果

Time

d

Rs

Ω·cm2

Cf

μF·cm-2

Rt

Ω·cm2

Ydl(Ydl1)

S·s n ·cm-2

ndl(ndl1)

Ydl2

S·s n ·cm-2

ndl2

Rc1

Ω·cm2

Rc2

Ω·cm2

Lθ

H·cm2

RL

Ω·cm2

00.858013.052.607.841 × 10-40.6048//1117.0///
10.69241.72.291.562 × 10-40.7939//1317.0/41.8630.76
31.63204.35.293.556 × 10-40.7390//1511.0/81.6531.42
76.452012.7172.191.063 × 10-40.383918.850 × 10-40.7600177.25623.7//
121.171032.4179.205.494 × 10-40.594015.240 × 10-40.6762212.95277.8//
144.242041.2136.2812.900 × 10-40.65763.193 × 10-40.5784123.25996.4//
表5  5Cr钢90℃温度下浸泡不同时间后阻抗谱拟合结果
图10  5Cr钢丝束电极在50℃下浸泡不同时间后的腐蚀电位和电流密度分布
图11  5Cr钢丝束电极在70℃下浸泡不同时间后的腐蚀电位和电流密度分布
图12  5Cr钢丝束电极在90℃下浸泡不同时间后的腐蚀电位和电流密度分布
1 Hua Y, Mohammed S, Barker R, et al. Comparisons of corrosion behaviour for X65 and low Cr steels in high pressure CO2-saturated brine [J]. J. Mater. Sci. Technol., 2020, 41: 21
doi: 10.1016/j.jmst.2019.08.050
2 Zhang S H, Hou L F, Du H, et al. A study on the interaction between chloride ions and CO2 towards carbon steel corrosion [J]. Corros. Sci., 2020, 167: 108531
doi: 10.1016/j.corsci.2020.108531
3 Das Chagas Almeida T, Elaine Bandeira M C, Moreira R M, et al. New Insights on the role of CO2 in the mechanism of carbon steel corrosion [J]. Corros. Sci., 2017, 120: 239
doi: 10.1016/j.corsci.2017.02.016
4 Du M, Zhu S D, Zhang X Y, et al. Research progress in formation and formation mechanism of CO2 corrosion scale on Cr containing low alloy steel [J]. Corros. Sci. Prot. Technol., 2019, 31: 335
4 杜 明, 朱世东, 张骁勇 等. 含Cr低合金钢的CO2腐蚀产物膜形成及机理研究进展 [J]. 腐蚀科学与防护技术, 2019, 31: 335
5 Escrivà-Cerdán C, Ooi S W, Joshi G R, et al. Effect of tempering heat treatment on the CO2 corrosion resistance of quench-hardened Cr-Mo low-alloy steels for oil and gas applications [J]. Corros. Sci., 2019, 154: 36
doi: 10.1016/j.corsci.2019.03.036
6 Wang T, Wang X, Li Z R, et al. Comparison on failures of long-distance oil & gas pipelines at home and abroad [J]. Oil Gas Storage Transp., 2017, 36: 1258
6 王 婷, 王 新, 李在蓉 等. 国内外长输油气管道失效对比[J]. 油气储运, 2017, 36: 1258
7 Bai H T, Yang M, Dong X W, et al. Research progress on CO2 corrosion product scales of carbon steels [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 295
7 白海涛, 杨 敏, 董小卫 等. CO2腐蚀产物膜的研究进展 [J]. 中国腐蚀与防护学报, 2020, 40: 295
doi: 10.11902/1005.4537.2019.150
8 Zhu J Y, Xu L N, Xu M X. Electrochemical impedance spectroscopy study of the corrosion of 3Cr pipeline steel in simulated CO2-saturated oilfield formation waters [J]. Corrosion, 2015, 71: 854
doi: 10.5006/1494
9 Jun T Y, Shiti Y. The effects of inhomogeneity in organic coatings on electrochemical measurements using a wire beam electrode: Part II [J]. Prog. Org. Coat., 1991, 19: 257
doi: 10.1016/0033-0655(91)80028-H
10 Dong Z H, Shi W, Guo X P. Localized corrosion inhibition of carbon steel in carbonated concrete pore solutions using wire beam electrodes [J]. Acta Phys. Chim. Sin., 2011, 27: 127
10 董泽华, 石 维, 郭兴蓬. 用丝束电极研究模拟碳化混凝土孔隙液中缓蚀剂对碳钢局部腐蚀的抑制行为 [J]. 物理化学学报, 2011, 27: 127
11 Liu J, Zhang L W, Mu X L, et al. Studies of electrochemical corrosion of low alloy steel under epoxy coating exposed to natural seawater using the WBE and EIS techniques [J]. Prog. Org. Coat., 2017, 111: 315
12 Pan C Q, Zhong Q D, Yang J, et al. Investigating crevice corrosion behavior of 6061 Al alloy using wire beam electrode [J]. J. Mater. Res. Technol., 2021, 14: 93
doi: 10.1016/j.jmrt.2021.06.039
13 Teng L, Chen X. Research progress of galvanic corrosion in marine environment [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 531
13 滕 琳, 陈 旭. 海洋环境中金属电偶腐蚀研究进展 [J]. 中国腐蚀与防护学报, 2022, 42: 531
14 Wen J Y, Song G H, Wei X Y, et al. Influence of Cr content on corrosion resistance of composite Ni/Ni-Cr/Ni-Cr-Al-Si films on Cu [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 638
14 温佳源, 宋贵宏, 韦小园 等. Cr含量对Cu合金表面Ni/Ni-Cr/Ni-Cr-Al-Si膜层耐蚀性的影响 [J]. 中国腐蚀与防护学报, 2022, 42: 638
doi: 10.11902/1005.4537.2021.173
15 Yue X Q, Zhang L, Sun C, et al. A thermodynamic and kinetic study of the formation and evolution of corrosion product scales on 13Cr stainless steel in a geothermal environment [J]. Corros. Sci., 2020, 169: 108640
doi: 10.1016/j.corsci.2020.108640
16 Xu L, Xu J, Xu M B, et al. Corrosion behavior of 3% Cr casing steel in CO2-containing environment: a case study [J]. Open Pet. Eng. J., 2018, 11: 1
doi: 10.2174/1874834101811010001
17 Hassan Sk M, Abdullah A M, Qi J. The effects of Cr/Mo micro-alloying on the corrosion behavior of carbon steel in CO2-saturated (sweet) brine under hydrodynamic control [J]. J. Electrochem. Soc., 2018, 165: C278
18 Wang X H, Li Z S, Tang Y F, et al. Influence of Cr content on characteristics of corrosion product film formed on several steels in artifitial stratum waters containing CO2-H2S-Cl- [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 1043
18 王小红, 李子硕, 唐御峰 等. CO2-H2S-Cl-共存的地层水环境中Cr含量对钢的腐蚀产物膜特性的影响 [J]. 中国腐蚀与防护学报, 2022, 42: 1043
doi: 10.11902/1005.4537.2021.272
19 Cheng Q L, Tao B, Liu S, et al. Corrosion behaviour of Q235B carbon steel in sediment water from crude oil [J]. J. Chin. Soc. Corros. Prot., 2017, 37: 126
19 程庆利, 陶 彬, 刘 栓 等. 原油沉积水对Q235B碳钢的腐蚀影响 [J]. 中国腐蚀与防护学报, 2017, 37: 126
doi: 10.11902/1005.4537.2016.212
20 Xu L N, Zhu J Y, Lu M X, et al. Electrochemical impedance spectroscopy study on the corrosion of the weld zone of 3Cr steel welded joints in CO2 environments [J]. Int. J. Min. Met. Mater., 2015, 22: 500
doi: 10.1007/s12613-015-1099-6
21 Cao C N. Principles of Corrosion Electrochemistry [M]. 2nd ed. Beijing: Chemical Industry Press, 2004: 185
21 曹楚南. 腐蚀电化学原理 [M]. 2版. 北京: 化学工业出版社, 2004: 185
22 Seo D I, Lee J B. Effects of competitive anion adsorption (Br-or Cl-) and semiconducting properties of the passive films on the corrosion behavior of the additively manufactured Ti-6Al-4V alloys [J]. Corros. Sci., 2020, 173: 108789
doi: 10.1016/j.corsci.2020.108789
23 Xie S L. Effects of AC on corrosion behavior of X70 steel in different soil environments [J]. Corros. Prot. Petrochem. Ind., 2022, 39(3): 6
23 谢丝莉. X70钢在不同土壤环境中的交流腐蚀行为研究 [J]. 石油化工腐蚀与防护, 2022, 39(3): 6
24 Ji K Q, Li G F, Zhao L. Pitting Behavior of two stainless steels in simulated heavy water reactor primary solution and 3.5%NaCl solution [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 653
24 纪开强, 李光福, 赵 亮. 两种不锈钢在模拟重水堆一回路溶液和 3.5%NaCl溶液中的点蚀行为 [J]. 中国腐蚀与防护学报, 2021, 41: 653
25 Gao Y, Jin Z Q, Li N. Influence of oxygen concentration on reinforcement corrosion in seawater sea-sand mortar based on wire beam electrode technique [J]. Bull. Chin. Ceram. Soc., 2022, 41: 2672
25 高 源, 金祖权, 李 宁. 利用丝束电极技术研究氧浓度对海水海砂砂浆中钢筋锈蚀的影响 [J]. 硅酸盐通报, 2022, 41: 2672
[1] 原玉, 向勇, 李晨, 赵雪会, 闫伟, 姚二冬. CCUS系统中CO2 注入井管材腐蚀研究进展[J]. 中国腐蚀与防护学报, 2024, 44(1): 15-26.
[2] 李春霖, 史洪微, 梁国平, 李丽, 王浩, 王伟, 刘福春, 韩恩厚. 高速列车用聚氨酯面漆耐蚀性能和老化机制研究[J]. 中国腐蚀与防护学报, 2023, 43(6): 1383-1391.
[3] 朱烨森, 蔡锟, 胡葆文, 夏云秋, 胡涛勇, 黄一. 海底管道CO2 腐蚀特性及预测模型研究进展[J]. 中国腐蚀与防护学报, 2023, 43(6): 1225-1236.
[4] 胡杰珍, 上官桔钰, 邓培昌, 冯绮蓝, 王贵, 王沛林. 基于阵列电极技术研究藤壶附着对Q235钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2023, 43(5): 1145-1150.
[5] 毛飞雄, 周羽婷, 姚文清, 沈翔, 肖龙, 李明辉. 基于PDM304不锈钢钝化膜生长动力学研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 911-921.
[6] 邓成满, 刘喆, 夏大海, 胡文彬. 5083-H111铝合金在模拟动态海水环境中的局部腐蚀机制[J]. 中国腐蚀与防护学报, 2023, 43(4): 683-692.
[7] 刘明, 王杰, 朱春晖, 张延晓. 3D打印NiTi形状记忆合金在模拟不同口腔环境中电化学腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 781-786.
[8] 王通, 王巍. 聚二甲基硅氧烷涂层自修复过程中的弛豫时间分布研究[J]. 中国腐蚀与防护学报, 2023, 43(2): 337-344.
[9] 袁世成, 吴艳峰, 徐长慧, 王兴奇, 冷哲, 杨延格. 多羟基超分散剂对水性环氧涂层防腐性能的影响[J]. 中国腐蚀与防护学报, 2023, 43(2): 289-300.
[10] 毛英畅, 祝钰, 孙圣凯, 秦真波, 夏大海, 胡文彬. 5083铝合金在模拟海洋浪花飞溅区的局部腐蚀行为[J]. 中国腐蚀与防护学报, 2023, 43(1): 47-54.
[11] 潘鑫, 任泽, 连景宝, 何川, 郑平, 陈旭. 热处理工艺对超级13Cr不锈钢在饱和CO2油田地层水中腐蚀行为影响[J]. 中国腐蚀与防护学报, 2022, 42(5): 752-758.
[12] 赵国仙, 王映超, 张思琦, 宋洋. H2S/CO2对J55钢腐蚀的影响机制[J]. 中国腐蚀与防护学报, 2022, 42(5): 785-790.
[13] 温佳源, 宋贵宏, 韦小园, 赵鑫, 吴玉胜, 杜昊, 贺春林. Cr含量对Cu合金表面Ni/Ni-Cr/Ni-Cr-Al-Si膜层耐蚀性的影响[J]. 中国腐蚀与防护学报, 2022, 42(4): 638-646.
[14] 王淇萱, 吕文生, 杨鹏, 诸利一, 廖文景, 朱远乐. 尾矿库埋入式传感器不锈钢外壳腐蚀研究[J]. 中国腐蚀与防护学报, 2022, 42(2): 331-337.
[15] 苍雨, 黄毓晖, 翁硕, 轩福贞. 环境变量对核电汽轮机转子钢焊接接头电偶腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2021, 41(3): 318-326.