Please wait a minute...
中国腐蚀与防护学报  2024, Vol. 44 Issue (1): 47-58     CSTR: 32134.14.1005.4537.2023.017      DOI: 10.11902/1005.4537.2023.017
  研究报告 本期目录 | 过刊浏览 |
微合金化对高锰奥氏体钢在酸性盐雾环境下的耐蚀性能影响研究
常雪婷1, 宋嘉琪1, 王冰2, 王东胜1(), 陈文聪1, 王海丰3
1.上海海事大学海洋科学与工程学院 上海 201306
2.江南造船集团有限公司 上海 201913
3.西北工业大学 凝固技术国家重点实验室 西安 710072
Effect of Micro-alloying with Cr, N and Al on Corrosion Resistance of High Manganese Austenitic Steel in Acidic Salt Spray Environment
CHANG Xueting1, SONG Jiaqi1, WANG Bing2, WANG Dongsheng1(), CHEN Wencong1, WANG Haifeng3
1.School of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China
2.Jiangnan Shipbuilding Group Co., Ltd., Shanghai 201913, China
3.State Key Laboratory of Solidification Technology, Northwestern Polytechnical University, Xi'an 710072, China
引用本文:

常雪婷, 宋嘉琪, 王冰, 王东胜, 陈文聪, 王海丰. 微合金化对高锰奥氏体钢在酸性盐雾环境下的耐蚀性能影响研究[J]. 中国腐蚀与防护学报, 2024, 44(1): 47-58.
Xueting CHANG, Jiaqi SONG, Bing WANG, Dongsheng WANG, Wencong CHEN, Haifeng WANG. Effect of Micro-alloying with Cr, N and Al on Corrosion Resistance of High Manganese Austenitic Steel in Acidic Salt Spray Environment[J]. Journal of Chinese Society for Corrosion and protection, 2024, 44(1): 47-58.

全文: PDF(24658 KB)   HTML
摘要: 

为进一步提升高锰钢耐蚀性能,研究了酸性盐雾环境下,Cr、N、Al等微合金化元素添加对全奥氏体高锰钢腐蚀过程和电化学性能的影响。通过失重法、场发射扫描电镜(SEM)、白光干涉仪等手段研究了高锰钢腐蚀产物微观结构及演变规律,并通过动电位极化、交流阻抗谱等电化学技术研究两种高锰钢电化学性能的演化规律。实验结果表明:随着腐蚀时间延长,微合金化高锰钢锈层致密度更高,在长周期腐蚀中具有最好的耐蚀性。盐雾环境中点蚀逐渐发展为均匀腐蚀,微合金化处理后的高锰钢腐蚀动力学规律为ΔWWH= 4.44202 × 10-4t0.9618,小于普通高锰钢的拟合结果ΔWPT= 8.74985 × 10-4t0.67759。电化学结果表明,两种高锰钢腐蚀电流密度随着腐蚀时间增加均逐渐减小,且容抗弧逐渐增大。其中,微合金化高锰钢腐蚀240 h后的容抗弧远远大于未处理高锰钢,且腐蚀速率为1.925 × 10-3 mm/a,小于未处理高锰钢。微合金化处理后的高锰钢耐蚀性能更优,主要原因为Cr、N、Al等元素的微合金化使高锰钢析出碳化物减少,表面生成的氧化物更牢固、致密,提高了高锰钢表面氧化膜的完整性,有效阻碍Cl-渗入,使腐蚀产物变得致密,进而降低钢的腐蚀速率。

关键词 高锰奥氏体钢盐雾试验微合金化腐蚀速率电化学测试    
Abstract

To further enhance the corrosion resistance of high manganese steel, the effect of adding micro-alloying elements such as Cr, N, and Al on the corrosion process and electrochemical properties of fully austenitic high manganese steel (HMS) in acidic salt spray environment was investigated. The corrosion performance and corrosion products of the HMS were assessed by means of mass loss method, field emission scanning electron microscopy (SEM), and white light interferometry, and the evolution of electrochemical properties of two HMSs (namely the micro-alloyed HMS (WH-HMS) and the un-alloyed HMS (PT-HMS)) was examined by electrochemical techniques such as dynamic potential polarization and AC impedance spectroscopy. The results show that with the prolongation of corrosion time, the formed oxide scale on Micro-alloyed HMS becomes much more compact and has much better corrosion resistance for long-cycle corrosion. The corrosion kinetics of the micro-alloyed high Mn steels follows ΔWWH= 4.44202 × 10-4t0.9618, in the contrast, the un-alloyed HMS follows ΔWPT= 8.74985 × 10-4t0.67759. The electrochemical results show that the corrosion current density of the two HMSs gradually decreases with increasing corrosion time, and the capacitive arc gradually increases. After 240 h corrosion, the micro-alloyed HMS presents the capacitive arc much greater than that of the untreated HMS, whereas the corresponding corrosion rate of 1.925 × 10-3 mm/a for the former is less than that of the later. The main reason for the better corrosion resistance of the micro-alloyed high manganese steel is that the micro-alloying of Cr, N, and Al reduces the precipitation of carbides within high manganese steel, the formed oxide scale is much compact with good adhesion to the substrate, therefore which can effectively hinder the attack of Cl- and thus provide better protectiveness for the micro-alloyed HMS.

Key wordshigh manganese austenitic steel    salt spraying    micro-alloyed    corrosion rate    electrochemical measurement
收稿日期: 2023-02-01      32134.14.1005.4537.2023.017
ZTFLH:  TG174  
基金资助:国家重点研发计划(2022YFB3705303);上海市科委技术标准项目(21DZ2205700);上海市教委“曙光”计划(19SG46);科技部国际合作交流项目(CU03-29);上海深海材料工程技术中心项目(19DZ2253100)
通讯作者: 王东胜,E-mail: wangds@shmtu.edu.cn,研究方向为金属材料低温性能研究
Corresponding author: WANG Dongsheng, E-mail: wangds@shmtu.edu.cn
作者简介: 常雪婷,女,1982年生,博士,教授
图1  微合金化处理后高锰钢及未处理高锰钢金相形貌
图2  两种高锰钢盐雾腐蚀不同时间后表面锈层微观形貌
图3  微合金化高锰钢盐雾腐蚀不同时间后的三维轮廓图
图4  普通高锰钢盐雾腐蚀不同时间后的三维轮廓图
图5  两种高锰钢盐雾腐蚀不同时间后去除锈层表面微观形貌
图6  微合金化高锰钢、普通高锰钢盐雾腐蚀不同时间后极化曲线
Salt spray time / hEcorr / VSCEIcorr / 10-6A·cm-2βa / mV·dec-1βc / mV·dec-1C-rate / 10-3 mm·a-1

12

48

96

168

240

-0.7041

-0.6885

-0.7078

-0.7197

-0.6772

5.328

4.119

2.997

4.889

1.962

0.093

0.091

0.064

0.075

0.063

0.091

0.091

0.070

0.086

0.062

5.230

4.043

2.942

4.809

1.925

表1  微合金化高锰钢极化曲线拟合结果
Salt spray time / hEcorr / VSCEIcorrr / 10-6A·cm-2βa / mV·dec-1βc / mV·dec-1C-rate / 10-3 mm·a-1

12

48

96

168

240

-0.6709

-0.7409

-0.7113

-0.7624

-0.7135

5.310

4.472

2.754

3.663

4.038

0.047

0.094

0.067

0.074

0.077

0.091

0.095

0.075

0.079

0.106

5.212

4.390

2.703

3.595

3.964

表2  普通高锰钢极化曲线拟合结果
图7  微合金化高锰钢、普通高锰钢盐雾腐蚀不同时间后的电化学阻抗谱图及等效电路图
Salt spray time / hRS / Ω·cm²Qf / S n ·Ω-1·cm-2n1Rf / Ω·cm²Qdl / S n ·Ω-1·cm-2n2Rct / Ω·cm²
128.5088.170 × 10-40.7282742.098 × 10-30.3572600
488.7671.181 × 10-30.6938556.777 × 10-30.792270.6
9610.386.790 × 10-40.76910037.362 × 10-30.729272.5
1689.7568.407 × 10-40.742786.94.015 × 10-30.418447.0
24015.845.690 × 10-40.72634.035.223 × 10-50.9492077
表3  盐雾腐蚀不同时间后微合金化高锰钢等效电路拟合结果
Salt spray time / hRS / Ω·cm²Qf / S n ·Ω-1·cm-2n1Rf / Ω·cm²Qdl / S n ·Ω-1·cm-2n2Rct / Ω·cm²
1210.881.746 × 10-30.666675.87.366 × 10-20.9572.99 × 107
4811.142.205 × 10-40.8126.4828.638 × 10-40.627982
969.8322.405 × 10-40.8503.5781.508 × 10-30.5651542
16814.081.057 × 10-30.64163.582.639 × 10-50.9261159
24013.985.275 × 10-40.64817.105.507 × 10-40.664983.4
表4  盐雾腐蚀不同时间后普通高锰钢等效电路拟合结果
图8  两种高锰钢盐雾腐蚀不同时间后腐蚀失重拟合曲线和腐蚀速率变化趋势
SampleWR2n
WH-HMSW = 4.44202 × 10-4t0.96180.987270.9618
PT-HMSW = 8.74985 × 10-4t0.677590.992820.6776
表5  两种高锰钢腐蚀动力学拟合结果
CorrosionSampleCorrosion rateMass loss
time / hmm·a-1g·cm-2
48WH-HMS0.57570.0107
PT-HMS1.07570.0176
96WH-HMS0.53530.0199
PT-HMS0.97880.0323
168WH-HMS0.45660.0297
PT-HMS0.92990.0677
240WH-HMS0.37450.0348
PT-HMS0.89820.0836
表6  两种高锰钢盐雾腐蚀不同时间后平均腐蚀速率及失重量
1 Liu J W, Yang J H, Wang C. Natural gas development pattern in China after pipeline network independence [J]. Nat. Gas Ind., 2020, 40(1): 132
1 刘剑文, 杨建红, 王 超. 管网独立后的中国天然气发展格局 [J]. 天然气工业, 2020, 40(1): 132
2 Li W, Wang Y C. The development trend and impact of global carbon-neutral LNG trade [J]. Int. Pet. Econ., 2022, 30(3): 72
2 李 伟, 王宇纯. 全球碳中和液化天然气贸易发展趋势及影响 [J]. 国际石油经济, 2022, 30(3): 72
3 Ye Z H, Wang A J, Yan Q, et al. Global pattern analysis of natural gas and the development strategy in China [J]. Acta Geosci. Sin., 2017, 38: 17
3 叶张煌, 王安建, 闫 强 等. 全球天然气格局分析和我国的发展战略 [J]. 地球学报, 2017, 38: 17
4 Zhong L, Wang Y, Jing J J, et al. Current status and prospect of development of LNG storage and transportation equipment in China [J]. China Heavy Equip., 2022, (4): 11
4 钟 林, 王 阳, 敬佳佳 等. 我国LNG产业储运装备发展现状与展望 [J]. 中国重型装备, 2022, (4): 11
5 Song P F. Thoughts on the coordinated development path of SNG, LNG industry and renewable energy under the background of "dual carbon" [J]. Pet. New Energy, 2022, 34(2): 88
5 宋鹏飞. “双碳”背景下煤制天然气与LNG产业及可再生能源协同发展路径的思考 [J]. 油气与新能源, 2022, 34(2): 88
6 Li J Q. Welding difficulties and control measures of 9%Ni steel in LNG inner tank [J]. Weld. Technol., 2019, 48(9): 150
6 李建权. LNG内罐9%Ni钢焊接难题及控制措施 [J]. 焊接技术, 2019, 48(9): 150
7 Du Q L, Kang S M, Li S T. Development of welding technology of ultra-low temperature high Manganese Steel and its application in LNG storage tank [J]. Technol. Innovation Appl., 2021, (11): 40
7 杜青林, 亢淑梅, 李顺涛. 超低温高锰钢焊接技术发展及在LNG储罐中的应用 [J]. 科技创新与应用, 2021, (11): 40
8 Luo Y, Wang C. Tendency in development of POSCO's ocean engineering steel [J]. Sichuan Metall., 2016, 38(6): 8
8 罗 晔, 王 超. 浦项制铁海洋工程用钢的研制方向 [J]. 四川冶金, 2016, 38(6): 8
9 Guo W, Cai Y, Hua X M. Development of low-temperature high manganese steel and its welding technology in LNG field [J]. Electric Weld. Mach., 2020, 50(11): 7
9 郭 伟, 蔡 艳, 华学明. LNG用低温高锰钢及其焊接技术发展 [J]. 电焊机, 2020, 50(11): 7
10 Liu D Y, Wang J X, Li J F, et al. Intergranular corrosion behavior of T6 aging treated micro-alloyed Al-Cu-Li alloys with Mg/Ag/Zn [J]. J. Chin. Soc. Corros. Prot., 2018, 38: 183
10 刘丹阳, 汪洁霞, 李劲风 等. Mg, Ag, Zn微合金化Al-Cu-Li系铝锂合金T6态时效的晶间腐蚀行为 [J]. 中国腐蚀与防护学报, 2018, 38: 183
doi: 10.11902/1005.4537.2017.054
11 Li C S, Li K, Dong J B, et al. Mechanical behaviour and microstructure of Fe-20/27Mn-4Al-0.3C low magnetic steel at room and cryogenic temperatures [J]. Mater. Sci. Eng., 2021, 809A: 140998
12 Tang Y H, Li B, Zhang G F, et al. Effect of Al on the microstructure and corrosion resistance of high-Mn steel [J]. Mater. Lett., 2022, 320: 132286
doi: 10.1016/j.matlet.2022.132286
13 Fajardo S, Llorente I, Jiménez J A, et al. Effect of Mn additions on the corrosion behaviour of TWIP Fe-Mn-Al-Si austenitic steel in chloride solution [J]. Corros. Sci., 2019, 154: 246
doi: 10.1016/j.corsci.2019.04.026
14 Zhang D D, Qin C L, Chen C, et al. Effect of Mn content on corrosion resistance of 0.9C-xMn-2Cr-Mo high manganese steel in rain water [J]. Mater. Prot., 2020, 53(10): 39
14 张丹丹, 秦春丽, 陈 冲 等. Mn含量对轨道用0.9C-xMn-2Cr-Mo高锰钢在雨水中耐蚀性的影响 [J]. 材料保护, 2020, 53(10): 39
15 Su G Q, Gao X H, Huo S, et al. New insights into the corrosion behaviour of medium manganese steel exposed to a NaCl solution spray [J]. Constr. Build. Mater., 2020, 261: 119908
16 Pan C, Cui Y, Liu L, et al. Effect of temperature on corrosion behavior of low-alloy steel exposed to a simulated marine atmospheric environment [J]. J. Mater. Eng. Perform., 2020, 29: 1400
doi: 10.1007/s11665-020-04649-5
17 Zhang Y, Zhang X, Chen S Y, et al. Effect of phosphoric acid concentration on corrosion resistance and passivation film properties of 316L stainless steel [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 819
17 张 媛, 张 弦, 陈思雨 等. 磷酸浓度对316L不锈钢耐蚀性及钝化膜特性的影响 [J]. 中国腐蚀与防护学报, 2022, 42: 819
18 Liu Q B, Liu Z D, Guo S Y, et al. Galvanic corrosion behavior of 5083 al-alloy and 30CrMnSiA steel in NaCl solutions [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 883
18 刘泉兵, 刘宗德, 郭胜洋 等. 5083铝合金与30CrMnSiA钢在不同Cl-浓度中电偶腐蚀行为的研究 [J]. 中国腐蚀与防护学报, 2021, 41: 883
doi: 10.11902/1005.4537.2020.184
19 Chen H, Fan Z B, Chen Z J, et al. Effect of Cl- and HSO 3 - on corrosion behavior of 439 stainless steel used in construction [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 493
19 陈昊, 樊志彬, 陈志坚 等. Cl-与HSO 3 - 对建筑用439不锈钢腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2022, 42: 493
doi: 10.11902/1005.4537.2021.126
20 Davalos-Monteiro R. Observations of corrosion product formation and stress corrosion cracking on brass samples exposed to ammonia environments [J]. Mater. Res., 2019, 22: e20180077
doi: 10.1590/1980-5373-mr-2018-0077
21 Liu L L, Zhang H, Bi H Y, et al. Corrosion behavior of cold-rolled metastable Cr-Mn-Ni-N austenitic stainless steel in acidic NaCl solution [J]. J. Mater. Res. Technol., 2022, 19: 278
doi: 10.1016/j.jmrt.2022.05.054
22 Gnanarathinam A, Palanisamy D, Manikandan N, et al. Comparison of corrosion behavior on laser welded austenitic stainless steel [J]. Mater. Today: Proc., 2021, 39: 649
23 Ming N X, Wang Q S, He C, et al. Effect of temperature on corrosion behavior of X70 steel in an artificial CO2-containing formation water [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 233
23 明男希, 王岐山, 何 川 等. 温度对X70钢在含CO2地层水中腐蚀行为影响 [J]. 中国腐蚀与防护学报, 2021, 41: 233
doi: 10.11902/1005.4537.2020.049
24 Cheng M L, He P, Lei L L, et al. Comparative studies on microstructure evolution and corrosion resistance of 304 and a newly developed high Mn and N austenitic stainless steel welded joints [J]. Corros. Sci., 2021, 183: 109338
doi: 10.1016/j.corsci.2021.109338
25 Yan X Y, Yan L, Kang S M, et al. Corrosion behavior and electrochemical corrosion of a high manganese steel in simulated marine splash zone [J]. Mater. Res. Express, 2021, 8: 126507
doi: 10.1088/2053-1591/ac3e96
26 Zhang Y G, Chen Y L, Zhang Y, et al. Initial corrosion behavior and mechanism of 7B04 aluminum alloy under acid immersion and salt spray environments [J]. Chin. J. Aeronaut., 2022, 35: 277
27 Wang H R, Yu H, Kondo S, et al. Corrosion behaviour of Al-added high Mn austenitic steels in molten lead bismuth eutectic with saturated and low oxygen concentrations at 450oC [J]. Corros. Sci., 2020, 175: 108864
doi: 10.1016/j.corsci.2020.108864
28 Liu J Y, Wu Y S, Wei L, et al. Study on the formation of carbide in high manganese steel and its solution at elevated temperature [J]. J. Mater. Eng., 2003, (3): 24
28 刘俊友, 伍燕生, 魏 立 等. 高锰钢中碳化物的形成特征及其高温固溶行为研究 [J]. 材料工程, 2003, (3): 24
29 Cui Y, Du H, Xu L P, et al. Effects of carbide precipitation on tensile and corrosion properties of the CrFeCoNi high-entropy alloy [J]. Spec. Cast. Nonferrous Alloy., 2019, 39: 1130
29 崔 宇, 杜 辉, 徐丽萍 等. 碳化物析出对CrFeCoNi高熵合金拉伸和腐蚀性能的影响 [J]. 特种铸造及有色合金, 2019, 39: 1130
30 Su G Q, Gao X H, Zhang D Z, et al. Offset effect of chromium on the adverse impact of manganese in a low-C medium-Mn steel with reversed austenite in the neutral salt spray condition [J]. Corrosion, 2017, 73: 1367
doi: 10.5006/2433
31 Alcántara J, Chico B, Díaz I, et al. Airborne chloride deposit and its effect on marine atmospheric corrosion of mild steel [J]. Corros. Sci., 2015, 97: 74
doi: 10.1016/j.corsci.2015.04.015
32 Li H, Liu Y H, Zhao L H, et al. Corrosion behavior of 300M ultra high strength steel in simulated marine environment [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 87
32 李 晗, 刘元海, 赵连红 等. 300M超高强度钢在模拟海洋环境中的腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2023, 43: 87
33 Dong B J, Liu W, Zhang T Y, et al. Corrosion failure analysis of low alloy steel and carbon steel rebar in tropical marine atmospheric environment: outdoor exposure and indoor test [J]. Eng. Failure Anal., 2021, 129: 105720
doi: 10.1016/j.engfailanal.2021.105720
34 Zhao T L, Liu K, Li Q. Comparison of the rusting behaviors of S450EW weathering steel under continuous spray and wet/dry cycling [J]. Constr. Build. Mater., 2021, 309: 125211
doi: 10.1016/j.conbuildmat.2021.125211
35 Liu X C, Zhang Z Z, Liu K, et al. Influence of copper, chromium and nickel on the corrosion resistance property of high strength weathering resistant steel [J]. Steel Rolling, 2019, 36(6): 17
35 刘晓翠, 张转转, 刘 锟 等. Cu、Cr、Ni元素对高强耐候钢腐蚀稳定性的影响 [J]. 轧钢, 2019, 36(6): 17
36 Tian J, Li G M, Chen S. Electrochemical study on effects of Si contents on the corrosion resistance of low alloy steels to sea water [J]. Equip. Environ. Eng., 2016, 13(2): 110
36 田 骏, 李国明, 陈 珊. Si对低合金钢耐海水腐蚀性能影响的电化学研究 [J]. 装备环境工程, 2016, 13(2): 110
37 Wu X Q, Fu Y, Ke W, et al. Effects of nitrogen on passivity of nickel-free stainless steels by electrochemical impedance spectroscopy analysis [J]. J. Mater. Eng. Perform., 2015, 24: 3607
doi: 10.1007/s11665-015-1646-3
38 Cao C N. On the impedance plane displays for irreversible electrode reactions based on the stability conditions of the steady-state—I. One state variable besides electrode potential [J]. Electrochim. Acta, 1990, 35: 831
doi: 10.1016/0013-4686(90)90077-D
39 Zhao P F, Wen L, Guo W Y, et al. Accelerated corrosion behavior and mechanism of high-strength aluminum alloy by cyclic salt-spray test [J]. Surf. Technol., 2022, 51(10): 260
39 赵朋飞, 文 磊, 郭文营 等. 高强铝合金循环盐雾加速腐蚀行为与机理研究 [J]. 表面技术, 2022, 51(10): 260
40 Shen S Y, Wang D S, Sun S B, et al. Corrosion behavior in artificial seawater of subzero treated EH40 marine steel suitable for extremely cold environments [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 151
40 沈树阳, 王东胜, 孙士斌 等. 深冷处理对EH40极寒环境船用钢板的海水腐蚀性能影响 [J]. 中国腐蚀与防护学报, 2020, 40: 151
doi: 10.11902/1005.4537.2019.010
41 Wang S X, Du N, Liu D X, et al. Corrosion kinetics and the relevance analysis for X80 steel in a simulated acidic soil solution and outdoor red soil [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 18
41 王帅星, 杜 楠, 刘道新 等. X80钢在酸性红壤模拟液及室外红壤中的腐蚀动力学规律及相关性分析 [J]. 中国腐蚀与防护学报, 2019, 39: 18
doi: 10.11902/1005.4537.2017.194
42 Zhao Y, Cao J Y, Fang Z G, et al. Corrosion behavior of A517Gr.Q marine steel in simulated corrosive condition of marine splashing zone [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 921
42 赵 伊, 曹京宜, 方志刚 等. A517Gr. Q海工钢在模拟海洋飞溅区的腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2022, 42: 921
[1] 王靖羽, 周学杰, 王洪伦, 吴军, 陈昊, 郑鹏华. 碳钢和高强钢在南海大气环境中的初期腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(1): 237-245.
[2] 王泉润, 侯进, 侯保荣, 田惠文. 气相缓蚀剂分析方法研究进展[J]. 中国腐蚀与防护学报, 2023, 43(6): 1189-1202.
[3] 王晓, 李明, 刘峰, 王忠平, 李相波, 李宁旺. 温度对B10铜镍合金管冲刷腐蚀行为影响规律研究[J]. 中国腐蚀与防护学报, 2023, 43(6): 1329-1338.
[4] 任黄威, 廖伯凯, 崔琳晶, 项腾飞. 液膜厚度对固态超滑表面在薄液膜下腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2023, 43(4): 862-870.
[5] 陈庆国, 唐全宏, 秦振杰, 李一凡, 李磊, 李轩鹏, 袁军涛, 苏航, 付安庆. “高温-结盐-CO2/O2”多因素耦合环境下热浸铝镀层腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43(3): 569-577.
[6] 幸雪松, 范白涛, 朱新宇, 张俊莹, 陈长风. 低H2S和高CO2分压下超深井用P110SS油套管钢腐蚀特征研究[J]. 中国腐蚀与防护学报, 2023, 43(3): 611-618.
[7] 王晓, 刘峰, 李焰, 张威, 李相波. 静态和动态海水中B10铜镍合金管的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43(1): 119-126.
[8] 杨湘愚, 关蕾, 李雨, 张永康, 王冠, 闫德俊. 基于正交试验的90°弯管冲刷腐蚀数值模拟及实验研究[J]. 中国腐蚀与防护学报, 2022, 42(6): 979-987.
[9] 梅佳雪, 杜尊峰, 朱海涛. 基于随机腐蚀的船舶结构极限承载力研究[J]. 中国腐蚀与防护学报, 2022, 42(4): 662-668.
[10] 王淇萱, 吕文生, 杨鹏, 诸利一, 廖文景, 朱远乐. 尾矿库埋入式传感器不锈钢外壳腐蚀研究[J]. 中国腐蚀与防护学报, 2022, 42(2): 331-337.
[11] 朱海林, 陆小猛, 李晓芬, 王俊霞, 刘建华, 冯丽, 马雪梅, 胡志勇. 含噻二唑季铵盐表面活性剂的合成及缓蚀杀菌性能研究[J]. 中国腐蚀与防护学报, 2022, 42(1): 51-59.
[12] 崔浩燃, 梁平, 史艳华, 杨众魁, 韩利. 脱硝剂浓度对S2205不锈钢耐蚀性及其临界点蚀温度的影响[J]. 中国腐蚀与防护学报, 2021, 41(4): 529-534.
[13] 葛鹏莉, 曾文广, 肖雯雯, 高多龙, 张江江, 李芳. H2S/CO2共存环境中施加应力与介质流动对碳钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(2): 271-276.
[14] 唐荣茂, 朱亦晨, 刘光明, 刘永强, 刘欣, 裴锋. Q235钢/导电混凝土在3种典型土壤环境中腐蚀的灰色关联度分析[J]. 中国腐蚀与防护学报, 2021, 41(1): 110-116.
[15] 贾世超, 高佳祺, 郭浩, 王超, 陈杨杨, 李旗, 田一梅. 再生水水质因素对铸铁管道的腐蚀研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 569-576.