Please wait a minute...
中国腐蚀与防护学报  2024, Vol. 44 Issue (1): 15-26     CSTR: 32134.14.1005.4537.2022.419      DOI: 10.11902/1005.4537.2022.419
  综合评述 本期目录 | 过刊浏览 |
CCUS系统中CO2 注入井管材腐蚀研究进展
原玉1, 向勇1(), 李晨2, 赵雪会3, 闫伟4, 姚二冬4
1.中国石油大学(北京)机械与储运工程学院 北京 102249
2.广西大学机械工程学院 南宁 530004
3.中国石油集团石油管工程技术研究院 石油管材及装备材料服役行为与结构安全国家重点实验室 西安 710077
4.中国石油大学(北京)非常规油气科学技术研究院 北京 102249
Research Progress on Corrosion of CO2 Injection Well Tubing in CCUS System
YUAN Yu1, XIANG Yong1(), LI Chen2, ZHAO Xuehui3, YAN Wei4, YAO Erdong4
1.College of Mechanical and Transportation Engineering, China University of Petroleum, Beijing 102249, China
2.College of Mechanical Engineering, Guangxi University, Nanning 530004, China
3.State Key Laboratory of Service Behavior and Structural Safety of Petroleum Pipe and Equipment Materials, Petroleum Pipe Engineering Technology Research Institute of CNPC, Xi'an 710077, China
4.Unconventional Petroleum Research Institute, China University of Petroleum, Beijing 102249, China
引用本文:

原玉, 向勇, 李晨, 赵雪会, 闫伟, 姚二冬. CCUS系统中CO2 注入井管材腐蚀研究进展[J]. 中国腐蚀与防护学报, 2024, 44(1): 15-26.
Yu YUAN, Yong XIANG, Chen LI, Xuehui ZHAO, Wei YAN, Erdong YAO. Research Progress on Corrosion of CO2 Injection Well Tubing in CCUS System[J]. Journal of Chinese Society for Corrosion and protection, 2024, 44(1): 15-26.

全文: PDF(731 KB)   HTML
摘要: 

针对CCUS技术流程中提高CO2采收率及CO2封存等过程中易导致事故发生的CO2注入井金属管材腐蚀失效问题进行了概述,针对该环境下事故率较高的应力腐蚀开裂、缝隙腐蚀和微生物腐蚀等方面的研究进展进行了梳理与概括,也对CO2注入井金属管材腐蚀失效主要的影响因素及防腐手段进行了分析与总结,并展望了该领域未来重点开展研究工作的主要方向。

关键词 CO2注入井CO2封存CO2腐蚀应力腐蚀开裂缝隙腐蚀    
Abstract

Carbon capture, utilization and storage (CCUS) technology is recognized as the main means to realize the low-carbon utilization of fossil energy, and will inevitably be developed and applied under the current energy consumption structure and energy strategic layout. This paper summarized the corrosion failure of metal pipes in CO2 injection wells that are prone to accidents in the process of CO2 enhanced oil recovery and CO2 storage in the CCUS technical process. The researches on corrosion cracking, crevice corrosion and microbiological influenced corrosion are reviewed and summarized. The main influencing factors and anti-corrosion methods of metal pipes in CO2 injection wells are also summarized and analyzed. The main research directions in this field in the future are also prospected.

Key wordsCO2 injection well    CO2 sequestration    CO2 corrosion    stress corrosion cracking    crevice corrosion
收稿日期: 2023-01-07      32134.14.1005.4537.2022.419
ZTFLH:  TG172  
基金资助:国家自然科学基金(52271082);北京市自然科学基金(2222074);内蒙古自治区科学技术重大专项(2021ZD0038);中国石油大学(北京)科研基金(ZX20200128)
通讯作者: 向勇,E-mail:xiangy@cup.edu.cn,研究方向为CCUS、油气腐蚀与防护、氢能储运和材料高温失效等
Corresponding author: XIANG Yong, E-mail: xiangy@cup.edu.cn
作者简介: 原 玉,男,1996年生,博士生
1 BP. Statistical review of world energy-2022 [R]. London: BP, 2022
2 Cai B F, Li Q, Zhang X, et al. China annual report on carbon dioxide capture, utilization, and storage (CCUS) (2021)——Study on China's CCUS path[R]. Beijing: Chinese Academy of Environmental Planning, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, The Administrative Center for China's Agenda 21, 2021
2 蔡博峰, 李 琦, 张 贤 等. 中国二氧化碳捕集利用与封存 (CCUS) 年度报告 (2021)―中国 CCUS 路径研究 [R]. 生态环境部环境规划院, 中国科学院武汉岩土力学研究所, 中国21世纪议程管理中心. 2021
3 Turan G, Zapantis A, Kearns D, et al. Global status of CCS 2021 [R]. Australia: CCS, 2021
3 Turan G, Zapantis A, Kearns D 等. 全球碳捕集与封存现状2021 [R]. 澳大利亚: 全球碳捕集与封存研究院, 2021
4 Yuan S Y, Ma D S, Li J S, et al. Progress and prospects of carbon dioxide capture, EOR-utilization and storage industrialization [J]. Pet. Explor. Dev., 2022, 49: 828
4 袁士义, 马德胜, 李军诗 等. 二氧化碳捕集、驱油与埋存产业化进展及前景展望 [J]. 石油勘探与开发, 2022, 49: 828
doi: 10.11698/PED.20220212
5 Bachu S, Watson T L. Review of failures for wells used for CO2 and acid gas injection in Alberta, Canada [J]. Energy Procedia, 2009, 1: 3531
doi: 10.1016/j.egypro.2009.02.146
6 Chen S S, Wang H X, Liu Y X, et al. Root cause analysis of tubing and casing failures in low-temperature carbon dioxide injection well [J]. Eng. Fail. Anal., 2019, 104: 873
doi: 10.1016/j.engfailanal.2019.05.034
7 Laumb J D, Glazewski K A, Hamling J A, et al. Corrosion and failure assessment for CO2 EOR and associated storage in the weyburn field [J]. Energy Procedia, 2017, 114: 5173
doi: 10.1016/j.egypro.2017.03.1671
8 Zhao X H, He Z W, Liu J W, et al. Research status of CCUS corrosion control technology [J]. Pet. Tubular Goods Instrum., 2017, 3(3): 1
8 赵雪会, 何治武, 刘进文 等. CCUS腐蚀控制技术研究现状 [J]. 石油管材与仪器, 2017, 3(3): 1
9 Zhao X H, Huang W, Li H, et al. Research status and suggestions of CCUS technology to promote the rapid realization of "dual carbon" goal [J]. Pet. Tubular Goods Instrum., 2021, 7(6): 26
9 赵雪会, 黄 伟, 李宏伟 等. 促进“双碳”目标快速实现的CCUS技术研究现状及建议 [J]. 石油管材与仪器, 2021, 7(6): 26
10 Davison J. Performance and costs of power plants with capture and storage of CO2 [J]. Energy, 2007, 32: 1163
doi: 10.1016/j.energy.2006.07.039
11 Xing L R, Wu Z W, Zhang R Y. Development status and prospect analysis of CCUS industry [J]. Int. Pet. Econo., 2021, 29(8): 99
11 邢力仁, 武正弯, 张若玉. CCUS产业发展现状与前景分析 [J]. 国际石油经济, 2021, 29(8): 99
12 De Visser E, Hendriks C, Barrio M, et al. Dynamis CO2 quality recommendations [J]. Int. J. Greenhouse Gas Control, 2008, 2: 478
doi: 10.1016/j.ijggc.2008.04.006
13 Halseid M, Dugstad A, Morland B. Corrosion and bulk phase reactions in CO2 transport pipelines with impurities: review of recent published studies [J]. Energy Procedia, 2014, 63: 2557
14 Shirley P, Myles P. Quality guidelines for energy system studies: CO2 impurity design parameters [R]. Pittsburgh: National Energy Technology Laboratory, 2019
15 Gong P, Zhang C M, Wu Z Q, et al. Study on the effect of CaCO3 whiskers on carbonized self-healing cracks of cement paste: application in CCUS cementing [J]. Constr. Build. Mater., 2022, 321: 126368
doi: 10.1016/j.conbuildmat.2022.126368
16 Zhou Y B, Wang R, He Y F, et al. Analysis and comparison of typical cases of CO2 geological storage in saline aquifer [J]. Pet. Geol. Recovery Effic., 2023, 30(2): 162
16 周银邦, 王 锐, 何应付 等. 咸水层CO2地质封存典型案例分析及对比 [J]. 油气地质与采收率, 2023, 30(2): 162
17 Xu T, Yang Z, Zhou T Y, et al. Carbon capture and storage (CCS) and CO2 flooding technology development in the United States and China [J]. Int. Pet. Econ., 2016, 24(4): 12
17 徐 婷, 杨 震, 周体尧 等. 中美二氧化碳捕集和驱油发展状况分析 [J]. 国际石油经济, 2016, 24(4): 12
18 Xiang Y, Hou L, Du M, et al. Research progress and development prospect of CCUS-EOR technologies in China [J]. Pet. Geol. Recovery Effic., 2023, 30(2): 1
18 向 勇, 侯 力, 杜猛 等. 中国CCUS-EOR技术研究进展及发展前景 [J]. 油气地质与采收率, 2023, 30(2): 1
19 Zhang Z, Li Y J, Zhang C, et al. Wellbore integrity design of high-temperature gas wells containing CO2 [J]. Nat. Gas Ind., 2013, 33(9): 79
19 张 智, 李炎军, 张 超 等. 高温含CO2气井的井筒完整性设计 [J]. 天然气工业, 2013, 33(9): 79
20 Hickman S H, Hsieh P A, Mooney W D, et al. Scientific basis for safely shutting in the Macondo well after the April 20, 2010 Deepwater horizon blowout [J]. Proc. Natl. Acad. Sci. USA, 2012, 109: 20268
doi: 10.1073/pnas.1115847109
21 Lindeberg E, Bergmo P, Torsæter M, et al. Aliso canyon leakage as an analogue for worst case CO2 leakage and quantification of acceptable storage loss [J]. Energy Procedia, 2017, 114: 4279
22 Wan L F, Li G S, Huang Z W, et al. Research on the principles of wellbore multiphase flow during supercritical fluid influx [J]. Drill. Prod. Technol, 2012, 35(3): 9
22 万立夫, 李根生, 黄中伟 等. 超临界流体侵入井筒多相流动规律研究 [J]. 钻采工艺, 2012, 35(3): 9
23 Zhang Z, Shi T H, Wu Y, et al. Discussion of supercritical carbon dioxide and hydrogen sulfide induced drilling and production accidents in high sour gas well [J]. Drill. Prod. Technol, 2007, 30(1): 94
23 张 智, 施太和, 吴 优 等. 高酸性气井超临界态二氧化碳硫化氢的相态变化诱发钻采事故探讨 [J]. 钻采工艺, 2007, 30(1): 94
24 Choi Y S, Young D, Nešić S, et al. Wellbore integrity and corrosion of carbon steel in CO2 geologic storage environments: a literature review [J]. Int. J. Greenhouse Gas Control, 2013, 16: S70
doi: 10.1016/j.ijggc.2012.12.028
25 Bai M X, Zhang Z C, Fu X F. A review on well integrity issues for CO2 geological storage and enhanced gas recovery [J]. Renewable Sustainable Energy Rev., 2016, 59: 920
26 Liu Z Y, Ren T, Zhang D P, et al. Experimental study on failure risk of CO2 flooding injection pipe under repeated high and low temperature impacts [J]. China Saf. Sci. J., 2015, 25(7): 80
26 刘振翼, 任 韬, 张德平 等. 高低温冲击条件下CO2驱注入管失效危险性试验研究 [J]. 中国安全科学学报, 2015, 25(7): 80
27 Xiang Y, Wang Z, Li Z, et al. Effect of exposure time on the corrosion rates of X70 steel in supercritical CO2/SO2/O2/H2O environments [J]. Corrosion, 2013, 69(3): 251
28 Jones D A. Evidence of localized surface plasticity during stress corrosion cracking [A]. Corrosion `95: National Association of Corrosion Engineers (NACE) International Annual Conference and Corrosion Show [C]. Orlando, 1995
29 Sieradzki K, Newman R C. Brittle behavior of ductile metals during stress-corrosion cracking [J]. Philos. Mag., 1985, 51A: 95
30 Sieradzki K, Newman R C. Stress-corrosion cracking [J]. J. Phys. Chem. Solids, 1987, 48: 1101
doi: 10.1016/0022-3697(87)90120-X
31 Woodtli J, Kieselbach R. Damage due to hydrogen embrittlement and stress corrosion cracking [J]. Eng. Fail. Anal., 2000, 7: 427
doi: 10.1016/S1350-6307(99)00033-3
32 Chu W Y, Qiao L J, Gao K W. Anodic dissolution-type stress corrosion [J]. Chin. Sci. Bull., 2000, 45: 2581
doi: 10.1360/csb2000-45-24-2581
32 褚武扬, 乔利杰, 高克玮. 阳极溶解型应力腐蚀 [J]. 科学通报, 2000, 45: 2581
33 Liu C S, Li Z Z, Chen C F. Stress corrosion cracking of stainless steel [J]. Surf. Technol., 2020, 49(3): 1
33 刘传森, 李壮壮, 陈长风. 不锈钢应力腐蚀开裂综述 [J]. 表面技术, 2020, 49(3): 1
34 Xu Y Z. Research progress of stress corrosion [J]. Petrochem. Saf. Environ. Prot. Technol., 2021, 37(1): 26
34 徐亚洲. 应力腐蚀研究进展 [J]. 石油化工安全环保技术, 2021, 37(1): 26
35 Yu J, Zhang D P, Pan R S, et al. Electrochemical noise of stress corrosion cracking of P110 tubing steel in sulphur-containing downhole annular fluid [J]. Acta Metall. Sin., 2018, 54: 1399
doi: 10.11900/0412.1961.2018.00033
35 余 军, 张德平, 潘若生 等. 井下含硫环空液中P110油管钢应力腐蚀开裂的电化学噪声特征 [J]. 金属学报, 2018, 54: 1399
36 Zhao X H, Liu J L, Zeng R H, et al. Effect of Cl- concentration on the stress corrosion sensitivity of martensitic stainless steel in saturated CO2 solution [J]. Mater. Prot., 2021, 54(1): 36
36 赵雪会, 刘君林, 曾瑞华 等. 饱和CO2溶液中Cl-浓度对马氏体不锈钢应力腐蚀敏感性的影响 [J]. 材料保护, 2021, 54(1): 36
37 Benac D J, Cherolis N, Wood D. Managing cold temperature and brittle fracture hazards in pressure vessels [J]. J. Fail. Anal. Prev., 2016, 16: 55
doi: 10.1007/s11668-015-0052-3
38 Huang J Y, Wu W P, Liu W, et al. Mechanism for stress corrosion cracking of carbon steel in environment containing hydrogen sulfide/carbon dioxide [J]. Mater. Prot., 2011, 44(8): 32
38 黄金营, 吴伟平, 柳 伟 等. 碳钢在H2S/CO2体系中的应力腐蚀开裂机理 [J]. 材料保护, 2011, 44(8): 32
39 Ugiansky G M, Payer J H. Stress Corrosion Cracking: The Slow Strain-Rate Technique [M]. Philadelphia: ASTM International, 1979
40 Zeng Y M, Li K Y. Influence of SO2 on the corrosion and stress corrosion cracking susceptibility of supercritical CO2 transportation pipelines [J]. Corros. Sci., 2020, 165: 108404
doi: 10.1016/j.corsci.2019.108404
41 Sun C, Yan X L, Sun J B, et al. Unraveling the effect of O2, NO2 and SO2 impurities on the stress corrosion behavior of X65 steel in water-saturated supercritical CO2 streams [J]. Corros. Sci., 2022, 209: 110729
doi: 10.1016/j.corsci.2022.110729
42 Li K Y, Zeng Y M. Long-term corrosion and stress corrosion cracking of X65 steel in H2O-saturated supercritical CO2 with SO2 and O2 impurities [J]. Constr. Build. Mater., 2023, 362: 129746
doi: 10.1016/j.conbuildmat.2022.129746
43 Liu R K. Stress corrosion cracking behavior and prevention of high strength tubing steels in typical H2S/CO2 annulus environment [D]. Beijing: University of Science and Technology Beijing, 2015
43 刘然克. 典型H2S/CO2环空环境下高强油套管钢应力腐蚀机理与防护 [D]. 北京: 北京科技大学, 2015
44 Hu F T, Zhao M F, Xing X, et al. Failure analysis of 3Cr P110 repaired tubing in an oilfield [J]. Mater. Prot., 2020, 53(10): 115
44 胡芳婷, 赵密锋, 邢 星 等. 某油田3Cr P110修复油管断裂原因分析 [J]. 材料保护, 2020, 53(10): 115
45 Tan C Y, Yin Q S, Yang J, et al. Corrosion mechanism of L80 tubing in a Bohai oilfield [J]. Surf. Technol., 2017, 46(3): 236
45 谭才渊, 殷启帅, 杨 进 等. 渤海某油田L80油管腐蚀机理研究 [J]. 表面技术, 2017, 46(3): 236
46 Wang J L, Zang H Y, Zhang Y M, et al. Corrosion failure analysis of oil pipes and couplings [J]. Corros. Prot., 2010, 31: 662
46 王俊良, 臧晗宇, 张亚明 等. 油管及油管接箍腐蚀失效分析 [J]. 腐蚀与防护, 2010, 31: 662
47 Zhao C Y, Qi Y M. Fracture failure analysis of P110 tubing coupling for an injection well in an oil field [J]. Pet. Tubular Goods Instrum., 2022, 8(3): 46
47 赵存耀, 齐亚猛. 某油田注水井P110钢级油管接箍开裂失效分析 [J]. 石油管材与仪器, 2022, 8(3): 46
48 Wang F, Wei C Y, Huang T J, et al. Effect of H2S partial pressure on stress corrosion cracking behavior of 13Cr stainless steel in annulus environment around CO2 injection well [J]. J. Chin. Soc. Corros. Prot., 2014, 34: 46
48 王 峰, 韦春艳, 黄天杰 等. H2S分压对13Cr不锈钢在CO2注气井环空环境中应力腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2014, 34: 46
49 Tsay L W, Lee W C, Shiue R K, et al. Notch tensile properties of laser-surface-annealed 17-4 PH stainless steel in hydrogen-related environments [J]. Corros. Sci., 2002, 44: 2101
doi: 10.1016/S0010-938X(02)00023-9
50 Tsay L W, Lin W L. Hydrogen sulphide stress corrosion cracking of weld overlays for desulfurization reactors [J]. Corros. Sci., 1998, 40: 577
doi: 10.1016/S0010-938X(97)00161-3
51 Chen S H, Yeh R T, Cheng T P, et al. Hydrogen sulphide stress corrosion cracking of TIG and laser welded 304 stainless steel [J]. Corros. Sci., 1994, 36: 2029
doi: 10.1016/0010-938X(94)90006-X
52 Kane R D, Joia C J B M, Small A L L T, et al. Rapid screening of stainless steels for environmental cracking [J]. Mater. Perform., 1997, 36(9): 71
53 Ding Y, Cheng C H, Case R. Electrochemical and morphological investigation of corrosion behavior of C1018 in a subcritical and supercritical CO2 environment with presence of H2 S [A]. AMPP Annual Conference + Expo [C]. San Antonio, 2022
54 Zhou C S, Zheng S Q, Chen C F, et al. The effect of the partial pressure of H2S on the permeation of hydrogen in low carbon pipeline steel [J]. Corros. Sci., 2013, 67: 184
doi: 10.1016/j.corsci.2012.10.016
55 Li K Y, Zeng Y M, Luo J L. Influence of H2S on the general corrosion and sulfide stress cracking of pipelines steels for supercritical CO2 transportation [J]. Corros. Sci., 2021, 190: 109639
doi: 10.1016/j.corsci.2021.109639
56 Zhang Y M, Zang H Y, Dong A H, et al. Corrosion failure analysis of 13Cr steel oil pipe [J]. Corros. Sci. Prot. Technol., 2009, 21: 499
56 张亚明, 臧晗宇, 董爱华 等. 13Cr钢油管腐蚀原因分析 [J]. 腐蚀科学与防护技术, 2009, 21: 499
57 Cai R, Zhao J L, Wu P, et al. Cause analysis on corrosion of an L80 tube threaded joint [J]. Phys. Test. Chem. Anal., 2019, 55A: 278
57 蔡 锐, 赵金龙, 吴鹏 等. L80油管螺纹接头腐蚀原因分析 [J]. 理化检验-物理分册, 2019, 55: 278
58 Zhang Y, Yang K, Yu L S, et al. Research progress on thread corrosion and protection of oil well pipe joint [J]. Sci. Technol. Eng., 2022, 22: 2563
58 张 颖, 杨 坤, 余柳丝 等. 油井管接头螺纹腐蚀与防护研究进展 [J]. 科学技术与工程, 2022, 22: 2563
59 Betts A J, Boulton L H. Crevice corrosion: review of mechanisms, modelling, and mitigation [J]. Br. Corros. J., 1993, 28: 279
doi: 10.1179/000705993799156299
60 Pickering H W. The significance of the local electrode potential within pits, crevices and cracks [J]. Corros. Sci., 1989, 29: 325
doi: 10.1016/0010-938X(89)90039-5
61 Stockert L, Böhni H. Susceptibility to crevice corrosion and metastable pitting of stainless steels [J]. Mater. Sci. Forum, 1991, 44-45: 313
doi: 10.4028/www.scientific.net/MSF.44-45
62 Li Y Z, Wang X, Zhang G A. Corrosion behaviour of 13Cr stainless steel under stress and crevice in 3.5 wt.% NaCl solution [J]. Corros. Sci., 2020, 163: 108290
doi: 10.1016/j.corsci.2019.108290
63 Zhu G Y, Li Y Y, Hou B S, et al. Corrosion behavior of 13Cr stainless steel under stress and crevice in high pressure CO2/O2 environment [J]. J. Mater. Sci. Technol., 2021, 88: 79
doi: 10.1016/j.jmst.2021.02.018
64 Zhu L Y, Cui Z Y, Cui H Z, et al. The effect of applied stress on the crevice corrosion of 304 stainless steel in 3.5 wt.% NaCl solution [J]. Corros. Sci., 2022, 196: 110039
doi: 10.1016/j.corsci.2021.110039
65 Kim S H, Lee J H, Kim J G, et al. Effect of the crevice former on the corrosion behavior of 316L stainless steel in chloride-containing synthetic tap water [J]. Met. Mater. Int., 2018, 24: 516
doi: 10.1007/s12540-018-0062-2
66 Carroll S, Carey J W, Dzombak D, et al. Review: role of chemistry, mechanics, and transport on well integrity in CO2 storage environments [J]. Int. J. Greenhouse Gas Control, 2016, 49: 149
doi: 10.1016/j.ijggc.2016.01.010
67 Song Y Q, Du C W, Zhang X, et al. Influence of Cl- concentration on crevice corrosion of X70 pipeline steel [J]. Acta Metall. Sin., 2009, 45: 1130
67 宋义全, 杜翠薇, 张 新 等. Cl-浓度对X70管线钢缝隙腐蚀的影响 [J]. 金属学报, 2009, 45: 1130
68 Mu J, Li Y Z, Wang X. Crevice corrosion behavior of X70 steel in NaCl solution with different pH [J]. Corros. Sci., 2021, 182: 109310
doi: 10.1016/j.corsci.2021.109310
69 Hu Q. Study on the electrochemical noise characteristics and the mechanism of crevice corrosion [D]. Wuhan: Huazhong University of Science and Technology, 2011
69 胡 骞. 缝隙腐蚀的电化学噪声特征及机理研究 [D]. 武汉: 华中科技大学, 2011
70 Zhong X K, Zheng Z Q, Mo L, et al. Crevice corrosion at screwed joint with tensile stress [J]. Equip. Environ. Eng., 2020, 17(11): 52
70 钟显康, 郑子奇, 莫 林 等. 螺纹接头处拉应力作用下的缝隙腐蚀行为 [J]. 装备环境工程, 2020, 17(11): 52
71 De Waard C, Milliams D E. Carbonic acid corrosion of steel [J]. Corrosion, 1975, 31: 177
doi: 10.5006/0010-9312-31.5.177
72 Waard C D, Lotz U, Milliams D. Predictive model for CO2 corrosion engineering in wet natural gas pipelines [J]. Corrosion, 1991, 47: 976
73 Xiao G Q, Tan S Z, Yu Z M, et al. CO2 corrosion behaviors of 13Cr steel in the high-temperature steam environment [J]. Petroleum, 2020, 6: 106
doi: 10.1016/j.petlm.2019.12.001
74 Hu W C. Corrosion mechanism and anti-corrosion measures of CO2 on gas well tubing [J]. Prod. Trial Technol., 1997, 18(2): 67
74 胡文才. CO2对气井油管腐蚀机理及防腐措施 [J]. 试采技术, 1997, 18(2): 67
75 Yin Z F, Feng Y R, Zhao W Z, et al. Effect of temperature on CO2 corrosion of carbon steel [J]. Surf. Interface Anal., 2009, 41: 517
doi: 10.1002/sia.v41:6
76 Moreira R M, Franco C V, Joia C J B M, et al. The effects of temperature and hydrodynamics on the CO2 corrosion of 13Cr and 13Cr5Ni2Mo stainless steels in the presence of free acetic acid [J]. Corros. Sci., 2004, 46: 2987
doi: 10.1016/j.corsci.2004.05.020
77 Nazari M H, Allahkaram S R, Kermani M B. The effects of temperature and pH on the characteristics of corrosion product in CO2 corrosion of grade X70 steel [J]. Mater. Des., 2010, 31: 3559
78 Li D P, Han D D, Zhang L, et al. Effects of temperature on CO2 corrosion of tubing and casing steel [A]. Corrosion 2013 [C]. Orlando, 2013
79 Zhang Y C, Qu S P, Pang X L, et al. Review on corrosion behaviors of steels under supercritical CO2 condition [J]. Corros. Prot., 2011, 32: 854
79 张玉成, 屈少鹏, 庞晓露 等. 超临界CO2条件下钢的腐蚀行为研究进展 [J]. 腐蚀与防护, 2011, 32: 854
80 Maldal T, Tappel I M. CO2 underground storage for Snøhvit gas field development [J]. Energy, 2004, 29: 1403
doi: 10.1016/j.energy.2004.03.074
81 Xiang Y, Wang Z, Yang X X, et al. The upper limit of moisture content for supercritical CO2 pipeline transport [J]. J. Supercrit. Fluids, 2012, 67: 14
doi: 10.1016/j.supflu.2012.03.006
82 Sun C, Sun J B, Liu S B, et al. Effect of water content on the corrosion behavior of X65 pipeline steel in supercritical CO2-H2O-O2-H2S-SO2 environment as relevant to CCS application [J]. Corros. Sci., 2018, 137: 151
83 Dugstad A, Morland B, Clausen S. Corrosion of transport pipelines for CO2–effect of water ingress [J]. Energy Procedia, 2011, 4: 3063
doi: 10.1016/j.egypro.2011.02.218
84 Cabrini M, Lorenzi S, Pastore T, et al. Corrosion rate of high CO2 pressure pipeline steel for carbon capture transport and storage [J]. La Metall. Ital., 2014, 106: 21
85 Zhang Y C, Pang X L, Qu S P, et al. Discussion of the CO2 corrosion mechanism between low partial pressure and supercritical condition [J]. Corros. Sci., 2012, 59: 186
doi: 10.1016/j.corsci.2012.03.006
86 Ming N X, Wang Q S, He C, et al. Effect of temperature on corrosion behavior of X70 steel in an artificial CO2-containing formation water [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 233
86 明男希, 王岐山, 何 川 等. 温度对X70钢在含CO2地层水中腐蚀行为影响 [J]. 中国腐蚀与防护学报, 2021, 41: 233
doi: 10.11902/1005.4537.2020.049
87 Xiang Y, Wang Z, Li Z, et al. Effect of temperature on corrosion behaviour of X70 steel in high pressure CO2/SO2/O2/H2O environments [J]. Corros. Eng. Sci. Technol., 2013, 48: 121
doi: 10.1179/1743278212Y.0000000050
88 Choi Y S, Nešić S. Determining the corrosive potential of CO2 transport pipeline in high pCO2-water environments [J]. Int. J. Greenhouse Gas Control, 2011, 5: 788
89 Xu M H, Li W H, Zhou Y, et al. Effect of pressure on corrosion behavior of X60, X65, X70, and X80 carbon steels in water-unsaturated supercritical CO2 environments [J]. Int. J. Greenhouse Gas Control, 2016, 51: 357
90 Zhu Y J, Liu C Y, Wang F, et al. Corrosion behavior of tubing steel 13Cr in a simulated oilfield liquid with saturated carbon dioxide [J]. Corros. Sci. Prot. Technol., 2011, 23: 271
90 祝英剑, 刘长宇, 王峰 等. 油管钢在饱和CO2模拟油田液中的腐蚀行为研究 [J]. 腐蚀科学与防护技术, 2011, 23: 271
91 Sun C, Wang Y, Sun J B, et al. Effect of impurity on the corrosion behavior of X65 steel in water-saturated supercritical CO2 system [J]. J. Supercrit. Fluids, 2016, 116: 70
doi: 10.1016/j.supflu.2016.05.006
92 Choi Y S, Nesic S, Young D. Effect of impurities on the corrosion behavior of CO2 transmission pipeline steel in supercritical CO2-water environments [J]. Environ. Sci. Technol., 2010, 44: 9233
doi: 10.1021/es102578c
93 Li Y Y, Jiang Z N, Zhang Q H, et al. Unveiling the influential mechanism of O2 on the corrosion of N80 carbon steel under dynamic supercritical CO2 conditions [J]. Corros. Sci., 2022, 205: 110436
doi: 10.1016/j.corsci.2022.110436
94 Sun J B, Sun C, Wang Y. Effects of O2 and SO2 on water chemistry characteristics and corrosion behavior of X70 pipeline steel in supercritical CO2 transport system [J]. Ind. Eng. Chem. Res., 2018, 57: 2365
doi: 10.1021/acs.iecr.7b04870
95 Xiang Y, Wang Z, Xu C, et al. Impact of SO2 concentration on the corrosion rate of X70 steel and iron in water-saturated supercritical CO2 mixed with SO2 [J]. J. Supercrit. Fluids, 2011, 58: 286
96 Farelas F, Choi Y S, Nesic S. Effects of CO2 phase change, SO2 content and flow on the corrosion of CO2 transmission pipeline steel [A]. Corrosion 2012 [C]. Salt Lake City, 2012
97 Li C, Xiang Y, Li W G. Initial corrosion mechanism for API 5L X80 steel in CO2/SO2-saturated aqueous solution within a CCUS system: inhibition effect of SO2 impurity [J]. Electrochim. Acta, 2019, 321: 134663
doi: 10.1016/j.electacta.2019.134663
98 Xiang Y, Li C, Long Z W, et al. Electrochemical behavior of valve steel in a CO2/sulfurous acid solution [J]. Electrochim. Acta, 2017, 258: 909
doi: 10.1016/j.electacta.2017.11.141
99 Ayello F, Evans K, Thodla R, et al. Effect of impurities on corrosion of steel in supercritical CO2 [A]. Corrosion 2010 [C]. San Antonio, 2010
100 Xiang Y, Song C C, Li C, et al. Characterization of 13Cr steel corrosion in simulated EOR-CCUS environment with flue gas impurities [J]. Process Saf. Environ. Prot., 2020, 140: 124
doi: 10.1016/j.psep.2020.04.051
101 Dugstad A, Halseid M, Morland B. Experimental techniques used for corrosion testing in dense phase CO2 with flue gas impurities [A]. Corrosion 2014 [C]. San Antonio, 2014
102 Xiang Y, Wang Z, Li Z, et al. Long term corrosion of X70 steel and iron in humid supercritical CO2 with SO2 and O2 impurities [J]. Corros. Eng. Sci. Technol., 2013, 48: 395
doi: 10.1179/1743278213Y.0000000099
103 Gong Q J, Xiang Y, Zhang J Q, et al. Influence of elemental sulfur on the corrosion mechanism of X80 steel in supercritical CO2-saturated aqueous phase environment [J]. J. Supercrit. Fluids, 2021, 176: 105320
doi: 10.1016/j.supflu.2021.105320
104 Barker R, Hua Y, Neville A. Internal corrosion of carbon steel pipelines for dense-phase CO2 transport in carbon capture and storage (CCS)-a review [J]. Int. Mater. Rev., 2017, 62: 1
doi: 10.1080/09506608.2016.1176306
105 Xiang Y, Xie W M, Ni S Y, et al. Comparative study of A106 steel corrosion in fresh and dirty MEA solutions during the CO2 capture process: effect of NO 3 - [J]. Corros. Sci., 2020, 167: 108521
doi: 10.1016/j.corsci.2020.108521
106 Xiang Y, Yan M C, Choi Y S, et al. Time-dependent electrochemical behavior of carbon steel in MEA-based CO2 capture process [J]. Int. J. Greenhouse Gas Control, 2014, 30: 125
doi: 10.1016/j.ijggc.2014.09.003
107 Li J K, Sun C, Roostaei M, et al. Role of Ca2+ in the CO2 corrosion behavior and film characteristics of N80 steel and electroless Ni-P coating at high temperature and high pressure [J]. Mater. Chem. Phys., 2021, 267: 124618
doi: 10.1016/j.matchemphys.2021.124618
108 Bacca K R G, Lopes N F, Dos Santos Batista G, et al. Electrochemical, mechanical, and tribological properties of corrosion product scales formed on X65 steel under CO2 supercritical pressure environments [J]. Surf. Coat. Technol., 2022, 446: 128789
doi: 10.1016/j.surfcoat.2022.128789
109 Xu D K, Gu T Y. Bioenergetics explains when and why more severe MIC pitting by SRB can occur [A]. Corrosion 2011 [C]. Houston, 2011
110 Song X Q, Yang Y X, Yu D L, et al. Studies on the impact of fluid flow on the microbial corrosion behavior of product oil pipelines [J]. J. Pet. Sci. Eng., 2016, 146: 803
111 Zhang D P, Ma F, Wu Y L, et al. Optimization of injection technique of corrosion inhibitor in CO2-flooding oil recovery [J]. J. Southwest Pet. Univ. (Sci. Technol. Ed.), 2020, 42(2): 103
111 张德平, 马锋, 吴雨乐 等. 用于CO2注气驱的油井缓蚀剂加注工艺优化研究 [J]. 西南石油大学学报(自然科学版), 2020, 42(2): 103
112 Wang Q Y, Wu W, Li Q, et al. Under-deposit corrosion of tubing served for injection and production wells of CO2 flooding [J]. Eng. Fail. Anal., 2021, 127: 105540
113 Wang X T, Chen X, Han Z Z, et al. Stress corrosion cracking behavior of 2205 duplex stainless steel in 3.5%NaCl solution with sulfate reducing bacteria [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 43
113 王欣彤, 陈 旭, 韩镇泽 等. 硫酸盐还原菌作用下2205双相不锈钢在3.5%NaCl溶液中应力腐蚀开裂行为研究 [J]. 中国腐蚀与防护学报, 2021, 41: 43
doi: 10.11902/1005.4537.2019.268
114 Zhang T S, Wang J L, Li G F, et al. Crevice corrosion of X80 carbon steel induced by sulfate reducing bacteria in simulated seawater [J]. Bioelectrochemistry, 2021, 142: 107933
doi: 10.1016/j.bioelechem.2021.107933
115 Liu H W, Zhong X K, Liu H F, et al. Microbiologically-enhanced galvanic corrosion of the steel beneath a deposit in simulated oilfield-produced water containing Desulfotomaculum nigrificans [J]. Electrochem. Commun., 2018, 90: 1
doi: 10.1016/j.elecom.2018.03.001
116 Wu C, Wang Z P, Zhang Z, et al. Influence of crevice width on sulfate-reducing bacteria (SRB)-induced corrosion of stainless steel 316L [J]. Corros. Commun., 2021, 4: 33
doi: 10.1016/j.corcom.2021.12.001
117 Ma G, Gu Y H, Zhao J. Research progress on sulfate-reducing bacteria induced corrosion of steels [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 289
117 马 刚, 顾艳红, 赵 杰. 硫酸盐还原菌对钢材腐蚀行为的研究进展 [J]. 中国腐蚀与防护学报, 2021, 41: 289
118 Li X L, Chen B L, Zhang L, et al. Program optimization for corrosion of oil and gas wells of CO2 flooding in oilfield [J]. Sci. Technol. West China, 2013, 12(5): 2
118 李向良, 陈百炼, 张 亮 等. 油田CO2驱油气井防腐工艺优化 [J]. 中国西部科技, 2013, 12(5): 2
119 Zhong W H. Research and application of wellbore corrosion prevention technology in CO2 compound steam flooding [J]. Liaoning Chem. Ind., 2022, 51: 515
119 钟文浩. CO2复合蒸汽驱井筒腐蚀防治技术研究与应用 [J]. 辽宁化工, 2022, 51: 515
120 Bai Y L, Shen G L, Qin Q Y, et al. Effect of thiourea imidazoline quaternary ammonium salt corrosion inhibitor on corrosion of X80 pipeline steel [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 60
120 白云龙, 沈国良, 覃清钰 等. 硫脲基咪唑啉季铵盐缓蚀剂对X80管线钢腐蚀的影响 [J]. 中国腐蚀与防护学报, 2021, 41: 60
doi: 10.11902/1005.4537.2020.015
121 Zhang K, Sun Y, Wang C J, et al. Research on CO2 corrosion and protection in carbon capture, utilization and storage [J]. Surf. Technol., 2022, 51(9): 43
121 张 昆, 孙 悦, 王池嘉 等. 碳捕集、利用与封存中CO2腐蚀与防护研究 [J]. 表面技术, 2022, 51(9): 43
122 He Y J, Zhang T S, Wang H T, et al. Research progress of biocides for microbiologically influenced corrosion [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 748
122 何勇君, 张天遂, 王海涛 等. 微生物腐蚀杀菌剂研究进展 [J]. 中国腐蚀与防护学报, 2021, 41: 748
doi: 10.11902/1005.4537.2020.167
123 Sun C, Liu S B, Li J K, et al. Insights into the interfacial process in electroless Ni-P coating on supercritical CO2 transport pipeline as relevant to carbon capture and storage [J]. ACS Appl. Mater. Interfaces, 2019, 11: 16243
124 Luo H X, Wang C J, Liu S Y, et al. A novel self-cleaning functional composite coating with extraordinary anti-corrosion performance in high pressure CO2 conditions [J]. Compos. Sci. Technol., 2022, 228: 109638
doi: 10.1016/j.compscitech.2022.109638
125 Wang X, Ma F M, Chen Y X, et al. CO2 corrosion mechanisms and protection measurements in CO2 EOR [J]. Drill. Prod. Technol., 2006, 29(6): 73
125 王 霞, 马发明, 陈玉祥 等. 注CO2提高采收率工程中的腐蚀机理及防护措施 [J]. 钻采工艺, 2006, 29(6): 73
[1] 赵国仙, 刘冉冉, 丁浪勇, 张思琦, 郭梦龙, 王映超. 温度对5Cr钢在模拟油田高温高压环境中CO2 腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2024, 44(1): 175-186.
[2] 李双, 董立谨, 郑淮北, 吴铖川, 王洪利, 凌东, 王勤英. 飞机起落架用超高强钢应力腐蚀开裂研究进展[J]. 中国腐蚀与防护学报, 2023, 43(6): 1178-1188.
[3] 朱烨森, 蔡锟, 胡葆文, 夏云秋, 胡涛勇, 黄一. 海底管道CO2 腐蚀特性及预测模型研究进展[J]. 中国腐蚀与防护学报, 2023, 43(6): 1225-1236.
[4] 郭昭, 李晗, 崔中雨, 王昕, 崔洪芝. A100钢在动态薄液膜和人工海水环境中的应力腐蚀行为对比研究[J]. 中国腐蚀与防护学报, 2023, 43(6): 1303-1311.
[5] 吕正平, 李缘, 刘晓航, 崔中雨, 崔洪芝, 王昕, 逄昆, 李燚周. 酸性氯化钠溶液中硝酸钠和硫脲对7075铝合金缝隙腐蚀的协同缓蚀作用[J]. 中国腐蚀与防护学报, 2023, 43(6): 1367-1374.
[6] 李敏, 胡凌越, 胡科峰, 宋遥, 张泽群, 李宗欣, 张博威, 董超芳, 吴俊升. 316L不锈钢在深海环境中的缝隙腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43(6): 1375-1382.
[7] 白一涵, 张航, 朱泽洁, 王疆瑛, 曹发和. 缝隙腐蚀内部微区离子浓度监测的研究进展[J]. 中国腐蚀与防护学报, 2023, 43(4): 828-836.
[8] 王长罡, DANIEL Enobong Felix, 李超, 董俊华, 杨华, 张东玖. 海洋环境中碳钢和不锈钢螺栓紧固件的腐蚀机制差异研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 737-745.
[9] 潘鑫, 任泽, 连景宝, 何川, 郑平, 陈旭. 热处理工艺对超级13Cr不锈钢在饱和CO2油田地层水中腐蚀行为影响[J]. 中国腐蚀与防护学报, 2022, 42(5): 752-758.
[10] 赵国仙, 王映超, 张思琦, 宋洋. H2S/CO2对J55钢腐蚀的影响机制[J]. 中国腐蚀与防护学报, 2022, 42(5): 785-790.
[11] 刘宇桐, 陈震宇, 朱忠亮, 冯瑞, 包汉生, 张乃强. 2.25Cr1Mo钢及其焊接接头在高温水蒸气中的应力腐蚀开裂敏感性研究[J]. 中国腐蚀与防护学报, 2022, 42(4): 647-654.
[12] 刘保平, 张志明, 王俭秋, 韩恩厚, 柯伟. 核用结构材料在高温高压水中应力腐蚀裂纹萌生研究进展[J]. 中国腐蚀与防护学报, 2022, 42(4): 513-522.
[13] 柳皓晨, 范林, 张海兵, 王莹莹, 唐鋆磊, 白雪寒, 孙明先. 钛合金深海应力腐蚀研究进展[J]. 中国腐蚀与防护学报, 2022, 42(2): 175-185.
[14] 孙宝壮, 周霄骋, 李晓荣, 孙玮潞, 刘子瑞, 王玉花, 胡洋, 刘智勇. 不同组织的316L不锈钢在NH4Cl环境下应力腐蚀行为与机理[J]. 中国腐蚀与防护学报, 2021, 41(6): 811-818.
[15] 余德远, 刘智勇, 杜翠薇, 黄辉, 林楠. 管线钢土壤应力腐蚀开裂研究进展及展望[J]. 中国腐蚀与防护学报, 2021, 41(6): 737-747.