Please wait a minute...
金属学报  2023, Vol. 59 Issue (1): 75-86    DOI: 10.11900/0412.1961.2022.00431
  综述 本期目录 | 过刊浏览 |
基于高通量制备的增材制造材料成分设计
张百成1,2(), 张文龙1,2, 曲选辉1,2
1.北京科技大学 新材料技术研究院 北京材料基因工程高精尖创新中心 北京 100083
2.北京科技大学 现代交通金属材料与加工技术北京实验室 北京 100083
Composition Design of Additive Manufacturing Materials Based on High Throughput Preparation
ZHANG Baicheng1,2(), ZHANG Wenlong1,2, QU Xuanhui1,2
1.Beijing Advanced Innovation Center for Materials Genome Engineering, Advanced Material & Technology Institute, University of Science and Technology Beijing, Beijing 100083, China
2.Beijing Laboratory of Metallic Materials and Processing for Modern Transportation, University of Science and Technology Beijing, Beijing 100083, China
引用本文:

张百成, 张文龙, 曲选辉. 基于高通量制备的增材制造材料成分设计[J]. 金属学报, 2023, 59(1): 75-86.
Baicheng ZHANG, Wenlong ZHANG, Xuanhui QU. Composition Design of Additive Manufacturing Materials Based on High Throughput Preparation[J]. Acta Metall Sin, 2023, 59(1): 75-86.

全文: PDF(4507 KB)   HTML
摘要: 

增材制造作为一种新型制造技术,为航空航天、交通运输和生物医学等领域带来了革命性变化。但目前增材制造用金属材料仍基于传统合金,部分材料并不适用于高能束加工,性能仍有提高空间。目前的增材制造专用材料开发未脱离传统试错法,效率低下,是制约增材制造材料性能提高的瓶颈问题。本文就增材制造钢、钛合金、铝合金材料现状和问题进行了讨论,并列举增材制造高通量制备和表征技术在材料开发和设计上的应用,结合增材制造高通量制备的原理和特点,最后阐述了增材制造高通量制备和表征技术在材料开发上的机遇和挑战,并对增材制造关键材料开发与成分优化未来的发展方向做出展望。

关键词 增材制造高通量材料制备与表征材料开发力学性能    
Abstract

As a new manufacturing technology, additive manufacturing has brought about revolutionary changes in the aerospace, transportation, and biomedicine fields. However, since the metal materials used in additive manufacturing are still mainly traditional alloys, some of them are unsuitable for high-energy beam processing, indicating room for performance improvements. Besides, the development of additive manufacturing materials still follows the traditional trial-and-error model, seriously restricting the development of high-performance materials. Therefore, this paper discusses this situation and the existing additive manufacturing technology problems of steel, titanium alloys, and aluminum alloys, after which the application of high-throughput preparation and characterization technologies in material development and design were expounded. Combined with the principle and characteristics of high-throughput additive manufacturing preparations, the prospects and challenges of the high-throughput preparation and characterization technology of additive manufacturing in material development were expounded. Then, futuristic developmental directions of key materials for additive manufacturing development and composition optimization were proposed.

Key wordsadditive manufacturing    high-throughput preparation and characterization    materials development    mechanical property
收稿日期: 2022-08-31     
ZTFLH:  TG174.7  
基金资助:国家重点研发计划项目(2021YFB3802300);国家自然科学基金项目(51901020);国家自然科学基金项目(52171026)
作者简介: 张百成,男,1984年生,副教授,博士
图1  高通量材料开发流程与传统试错材料开发流程对比
图2  高通量增材制造提升航空航天关键材料性能[12~15]
图3  铝合金凝固曲线及晶粒长大示意图,改性前后增材制造铝合金晶粒结构形貌,及高通量优化铝合金成分范围[17,21,22,26]
图4  增材制造α、α + β、β钛合金微观结构及增材制造钛合金水平、构建方向力学性能范围[30~37]
图5  增材制造Ti6Al4V合金和Ti-8.5Cu合金的微观组织形貌、晶粒长大机理示意图以及增材制造Ti-Cu合金拉伸性能曲线[38]
图6  增材制造钢中主要组成元素和微观结构的变化[43~46]
图7  新型双相钢及新型大马士革钢微观结构,增材制造钢性能范围和未来双相钢性能趋势,以及增材制造梯度不锈钢高通量表征和分析[15,46,48~50,56,58~74]
图8  梯度材料制备原理示意图、梯度试样比较以及常见的高通量表征方法[12,13,76~78]
1 Tian X, Li D, Lu B. Additive Manufacturing: Controllable fabrication for integrated micro and macro structures [J]. J. Ceram. Sci. Technol., 2014, 5: 261
2 Lu B H. Additive manufacturing—Current situation and future [J]. China Mech. Eng., 2020, 31: 19
2 卢秉恒. 增材制造技术——现状与未来 [J]. 中国机械工程, 2020, 31: 19
3 Liu Z Y, He B, Lyu T Y, et al. A review on additive manufacturing of titanium alloys for aerospace applications: Directed energy deposition and beyond Ti-6Al-4V [J]. JOM, 2021, 73: 1804
doi: 10.1007/s11837-021-04670-6
4 Wei J, Chu X, Sun X Y, et al. Machine learning in materials science [J]. InfoMat, 2019, 1: 338
doi: 10.1002/inf2.12028
5 Su Y J, Fu H D, Bai Y, et al. Progress in materials genome engineering in china [J]. Acta Metall. Sin., 2020, 56: 1313
5 宿彦京, 付华栋, 白 洋 等. 中国材料基因工程研究进展 [J]. 金属学报, 2020, 56: 1313
6 Miracle D B, Li M, Zhang Z H, et al. Emerging capabilities for the high-throughput characterization of structural materials [J]. Annu. Rev. Mater. Res., 2021, 51: 131
doi: 10.1146/annurev-matsci-080619-022100
7 Aboulkhair N T, Simonelli M, Parry L, et al. 3D printing of aluminium alloys: Additive manufacturing of aluminium alloys using selective laser melting [J]. Prog. Mater. Sci., 2019, 106: 100578
doi: 10.1016/j.pmatsci.2019.100578
8 Azarniya A, Colera X G, Mirzaali M J, et al. Additive manufacturing of Ti-6Al-4V parts through laser metal deposition (LMD): Process, microstructure, and mechanical properties [J]. J. Alloys Compd., 2019, 804: 163
doi: 10.1016/j.jallcom.2019.04.255
9 Yin Y, Tan Q Y, Bermingham M, et al. Laser additive manufacturing of steels [J]. Int. Mater. Rev., 2022, 67: 487
doi: 10.1080/09506608.2021.1983351
10 Debroy T, Wei H L, Zuback J S, et al. Additive manufacturing of metallic components—Process, structure and properties [J]. Prog. Mater. Sci., 2018, 92: 112
doi: 10.1016/j.pmatsci.2017.10.001
11 Jiang Q, Zhang P P, Yu Z S, et al. A review on additive manufacturing of pure copper [J]. Coatings, 2021, 11: 740
doi: 10.3390/coatings11060740
12 Bobbio L D, Otis R A, Borgonia J P, et al. Additive manufacturing of a functionally graded material from Ti-6Al-4V to Invar: Experimental characterization and thermodynamic calculations [J]. Acta Mater., 2017, 127: 133
doi: 10.1016/j.actamat.2016.12.070
13 Wen Y J, Zhang B C, Narayan R L, et al. Laser powder bed fusion of compositionally graded CoCrMo-Inconel 718 [J]. Addit. Manuf., 2021, 40: 101926
14 Li Q G, Li G C, Lin X, et al. Development of a high strength Zr/Sc/Hf-modified Al-Mn-Mg alloy using laser powder bed fusion: Design of a heterogeneous microstructure incorporating synergistic multiple strengthening mechanisms [J]. Addit. Manuf., 2022, 57: 102967
15 Kürnsteiner P, Wilms M B, Weisheit A, et al. High-strength Damascus steel by additive manufacturing [J]. Nature, 2020, 582: 515
doi: 10.1038/s41586-020-2409-3
16 Wang Z, Ummethala R, Singh N, et al. Selective laser melting of aluminum and its alloys [J]. Materials, 2020, 13: 4564
doi: 10.3390/ma13204564
17 Martin J H, Yahata B D, Hundley J M, et al. 3D printing of high-strength aluminium alloys [J]. Nature, 2017, 549: 365
doi: 10.1038/nature23894
18 Samuel A M, Garza-Elizondo G H, Doty H W, et al. Role of modification and melt thermal treatment processes on the microstructure and tensile properties of Al-Si alloys [J]. Mater. Des., 2015, 80: 99
doi: 10.1016/j.matdes.2015.05.013
19 Yang J S, Liu C H, Ma P P, et al. Superposed hardening from precipitates and dislocations enhances strength-ductility balance in Al-Cu alloy [J]. Int. J. Plast., 2022, 158: 103413
doi: 10.1016/j.ijplas.2022.103413
20 Kenevisi M S, Yu Y F, Lin F. A review on additive manufacturing of Al-Cu (2xxx) aluminium alloys, processes and defects [J]. Mater. Sci. Technol., 2021, 37: 805
doi: 10.1080/02670836.2021.1958487
21 Wu J, Wang X Q, Wang W, et al. Microstructure and strength of selectively laser melted AlSi10Mg [J]. Acta Mater., 2016, 117: 311
doi: 10.1016/j.actamat.2016.07.012
22 Zhang J L, Gao J B, Song B, et al. A novel crack-free Ti-modified Al-Cu-Mg alloy designed for selective laser melting [J]. Addit. Manuf., 2021, 38: 101829
23 Zhang H, Zhu H H, Nie X J, et al. Effect of zirconium addition on crack, microstructure and mechanical behavior of selective laser melted Al-Cu-Mg alloy [J]. Scr. Mater., 2017, 134: 6
doi: 10.1016/j.scriptamat.2017.02.036
24 Nie X J, Zhang H, Zhu H H, et al. Effect of Zr content on formability, microstructure and mechanical properties of selective laser melted Zr modified Al-4.24Cu-1.97Mg-0.56Mn alloys [J]. J. Alloys Compd., 2018, 764: 977
doi: 10.1016/j.jallcom.2018.06.032
25 Jin P, Liu Y B, Li F X, et al. Realization of synergistic enhancement for fracture strength and ductility by adding TiC particles in wire and arc additive manufacturing 2219 aluminium alloy [J]. Composites, 2021, 219B: 108921
26 Leijon F, Wachter S, Fu Z W, et al. A novel rapid alloy development method towards powder bed additive manufacturing, demonstrated for binary Al-Ti, -Zr and -Nb alloys [J]. Mater. Des., 2021, 211: 110129
doi: 10.1016/j.matdes.2021.110129
27 Yang X P, Liu C R. Machining titanium and its alloys [J]. Mach. Sci. Technol., 1999, 3: 107
doi: 10.1080/10940349908945686
28 Li J H, Zhou X L, Brochu M, et al. Solidification microstructure simulation of Ti-6Al-4V in metal additive manufacturing: A review [J]. Addit. Manuf., 2020, 31: 100989
29 Lütjering G, Williams J C, Gysler A. Microstructure and mechanical properties of titanium alloys [A]. Microstructure and Properties of Materials [M]. Singapore: World Scientific, 2000: 1
30 Wei K W, Zeng X Y, Huang G, et al. Selective laser melting of Ti-5Al-2.5Sn alloy with isotropic tensile properties: The combined effect of densification state, microstructural morphology, and crystallographic orientation characteristics [J]. J. Mater. Process. Technol., 2019, 271: 368
doi: 10.1016/j.jmatprotec.2019.04.003
31 Carroll B E, Palmer T A, Beese A M. Anisotropic tensile behavior of Ti-6Al-4V components fabricated with directed energy deposition additive manufacturing [J]. Acta Mater., 2015, 87: 309
doi: 10.1016/j.actamat.2014.12.054
32 Zhao D L, Han C J, Li Y, et al. Improvement on mechanical properties and corrosion resistance of titanium-tantalum alloys in-situ fabricated via selective laser melting [J]. J. Alloys Compd., 2019, 804: 288
doi: 10.1016/j.jallcom.2019.06.307
33 Liu S Y, Shin Y C. Additive manufacturing of Ti6Al4V alloy: A review [J]. Mater. Des., 2019, 164: 107552
doi: 10.1016/j.matdes.2018.107552
34 Alcisto J, Enriquez A, Garcia H, et al. Tensile properties and microstructures of laser-formed Ti-6Al-4V [J]. J. Mater. Eng. Perform., 2011, 20: 203
doi: 10.1007/s11665-010-9670-9
35 Amsterdam E, Kool G A. High cycle fatigue of laser beam deposited Ti-6Al-4V and Inconel 718 [A]. ICAF 2009, Bridging the gap between theory and operational practice [M]. Dordrecht: Springer, 2009: 1261
36 Simonelli M, Tse Y Y, Tuck C. Effect of the build orientation on the mechanical properties and fracture modes of SLM Ti-6Al-4V [J]. Mater. Sci. Eng., 2014, A616: 1
37 Zhai Y W, Galarraga H, Lados D A. Microstructure, static properties, and fatigue crack growth mechanisms in Ti-6Al-4V fabricated by additive manufacturing: LENS and EBM [J]. Eng. Fail. Anal., 2016, 69: 3
doi: 10.1016/j.engfailanal.2016.05.036
38 Zhang D Y, Qiu D, Gibson M A, et al. Additive manufacturing of ultrafine-grained high-strength titanium alloys [J]. Nature, 2019, 576: 91
doi: 10.1038/s41586-019-1783-1
39 Zhang T L, Huang Z H, Yang T, et al. In situ design of advanced titanium alloy with concentration modulations by additive manufacturing [J]. Science, 2021, 374: 478
doi: 10.1126/science.abj3770 pmid: 34672735
40 Gong X Y, Yabansu Y C, Collins P C, et al. Evaluation of Ti-Mn alloys for additive manufacturing using high-throughput experimental assays and gaussian process regression [J]. Materials, 2020, 13: 4641
doi: 10.3390/ma13204641
41 Svetlizky D, Zheng B L, Vyatskikh A, et al. Laser-based directed energy deposition (DED-LB) of advanced materials [J]. Mater. Sci. Eng., 2022, A840: 142967
42 Haghdadi N, Laleh M, Moyle M, et al. Additive manufacturing of steels: A review of achievements and challenges [J]. J. Mater. Sci., 2021, 56: 64
doi: 10.1007/s10853-020-05109-0
43 Karlsson D, Chou C Y, Pettersson N H, et al. Additive manufacturing of the ferritic stainless steel SS441 [J]. Addit. Manuf., 2020, 36: 101580
44 Zhong Y, Liu L F, Wikman S, et al. Intragranular cellular segregation network structure strengthening 316L stainless steel prepared by selective laser melting [J]. J. Nucl. Mater., 2016, 470: 170
doi: 10.1016/j.jnucmat.2015.12.034
45 Casati R, Lemke J N, Tuissi A, et al. Aging behaviour and mechanical performance of 18-Ni 300 steel processed by selective laser melting [J]. Metals, 2016, 6 :218
doi: 10.3390/met6090218
46 Krell J, Röttger A, Geenen K, et al. General investigations on processing tool steel X40CrMoV5-1 with selective laser melting [J]. J. Mater. Process. Technol., 2018, 255: 679
doi: 10.1016/j.jmatprotec.2018.01.012
47 Durga A, Pettersson N H, Malladi S B A, et al. Grain refinement in additively manufactured ferritic stainless steel by in situ inoculation using pre-alloyed powder [J]. Scr. Mater., 2021, 194: 113690
doi: 10.1016/j.scriptamat.2020.113690
48 Benjamin D, Kirkpatrick C W. Properties and Selection, Stainless Steels, Tool Materials and Special Purpose Metals[M]. 9th Ed., Metals Park, Ohio: American Society for Metals, 1980: 1
49 Suryawanshi J, Prashanth K G, Ramamurty U. Mechanical behavior of selective laser melted 316L stainless steel [J]. Mater. Sci. Eng., 2017, A696: 113
50 Wang Y M, Voisin T, Mckeown J T, et al. Additively manufactured hierarchical stainless steels with high strength and ductility [J]. Nat. Mater., 2018, 17: 63
doi: 10.1038/nmat5021 pmid: 29115290
51 Yin Y J, Sun J Q, Guo J, et al. Mechanism of high yield strength and yield ratio of 316L stainless steel by additive manufacturing [J]. Mater. Sci. Eng., 2019, A744: 773
52 Bajaj P, Hariharan A, Kini A, et al. Steels in additive manufacturing: A review of their microstructure and properties [J]. Mater. Sci. Eng., 2020, A772: 138633
53 Ren B, Lu D, Zhou R, et al. Preparation and mechanical properties of selective laser melted H13 steel [J]. J. Mater. Res., 2019, 34: 1415
doi: 10.1557/jmr.2019.10
54 Zhu Y T, Wu X L. Heterostructured materials [J]. Prog. Mater. Sci., 2023, 131: 101019
doi: 10.1016/j.pmatsci.2022.101019
55 Jebaraj A V, Ajaykumar L, Deepak C R, et al. Weldability, machinability and surfacing of commercial duplex stainless steel AISI2205 for marine applications—A recent review [J]. J. Adv. Res., 2017, 8: 183
doi: 10.1016/j.jare.2017.01.002 pmid: 28203458
56 Saeidi K, Kevetkova L, Lofaj F, et al. Novel ferritic stainless steel formed by laser melting from duplex stainless steel powder with advanced mechanical properties and high ductility [J]. Mater. Sci. Eng., 2016, A665: 59
57 Hengsbach F, Koppa P, Duschik K, et al. Duplex stainless steel fabricated by selective laser melting—Microstructural and mechanical properties [J]. Mater. Des., 2017, 133: 136
doi: 10.1016/j.matdes.2017.07.046
58 Li H K, Thomas S, Hutchinson C. Delivering microstructural complexity to additively manufactured metals through controlled mesoscale chemical heterogeneity [J]. Acta Mater., 2022, 226: 117637
doi: 10.1016/j.actamat.2022.117637
59 Sun S H, Ishimoto T, Hagihara K, et al. Excellent mechanical and corrosion properties of austenitic stainless steel with a unique crystallographic lamellar microstructure via selective laser melting [J]. Scr. Mater., 2019, 159: 89
doi: 10.1016/j.scriptamat.2018.09.017
60 Mower T M, Long M J. Mechanical behavior of additive manufactured, powder-bed laser-fused materials [J]. Mater. Sci. Eng., 2016, A651: 198
61 Yadollahi A, Shamsaei N, Thompson S M, et al. Effects of process time interval and heat treatment on the mechanical and microstructural properties of direct laser deposited 316L stainless steel [J]. Mater. Sci. Eng., 2015, A644: 171
62 Mooney B, Kourousis K I, Raghavendra R. Plastic anisotropy of additively manufactured maraging steel: Influence of the build orientation and heat treatments [J]. Addit. Manuf., 2019, 25: 19
doi: 10.1016/j.addma.2018.10.032
63 Kempen K, Yasa E, Thijs L, et al. Microstructure and mechanical properties of selective laser melted 18Ni-300 steel [J]. Phys. Procedia, 2011, 12: 255
doi: 10.1016/j.phpro.2011.03.033
64 Suryawanshi J, Prashanth K G, Ramamurty U. Tensile, fracture, and fatigue crack growth properties of a 3 D printed maraging steel through selective laser melting [J]. J. Alloys Compd., 2017, 725: 355
doi: 10.1016/j.jallcom.2017.07.177
65 Tan C L, Zhou K S, Kuang M, et al. Microstructural characterization and properties of selective laser melted maraging steel with different build directions [J]. Sci. Technol. Adv. Mater., 2018, 19: 746
doi: 10.1080/14686996.2018.1527645
66 Deb Nath S, Irrinki H, Gupta G, et al. Microstructure-property relationships of 420 stainless steel fabricated by laser-powder bed fusion [J]. Powder Technol., 2019, 343: 738
doi: 10.1016/j.powtec.2018.11.075
67 Alam M K, Mehdi M, Urbanic R J, et al. Mechanical behavior of additive manufactured AISI 420 martensitic stainless steel [J]. Mater. Sci. Eng., 2020, A773: 138815
68 Kudzal A, Mcwilliams B, Hofmeister C, et al. Effect of scan pattern on the microstructure and mechanical properties of powder bed fusion additive manufactured 17-4 stainless steel [J]. Mater. Des., 2017, 133: 205
doi: 10.1016/j.matdes.2017.07.047
69 Murr L E, Martinez E, Hernandez J, et al. Microstructures and properties of 17-4 PH stainless steel fabricated by selective laser melting [J]. J. Mater. Res. Technol, 2012, 1: 167
doi: 10.1016/S2238-7854(12)70029-7
70 Shang F, Chen X Q, Wang Z Y, et al. The microstructure, mechanical properties, and corrosion resistance of UNS S32707 hyper-duplex stainless steel processed by selective laser melting [J]. Metals, 2019, 9: 1012
doi: 10.3390/met9091012
71 Baghdadchi A, Hosseini V A, Valiente Bermejo M A, et al. Wire laser metal deposition of 22%Cr duplex stainless steel: As-deposited and heat-treated microstructure and mechanical properties [J]. J. Mater. Sci., 2022, 57: 9556
doi: 10.1007/s10853-022-06878-6
72 Kunz J, Boontanom A, Herzog S, et al. Influence of hot isostatic pressing post-treatment on the microstructure and mechanical behavior of standard and super duplex stainless steel produced by laser powder bed fusion [J]. Mater. Sci. Eng., 2020, A794: 139806
73 Mally L, Werz M, Weihe S. Feasibility study on additive manufacturing of ferritic steels to meet mechanical properties of safety relevant forged parts [J]. Materials, 2022, 15: 383
doi: 10.3390/ma15010383
74 Nie J J, Wei L, Li D-L, et al. High-throughput characterization of microstructure and corrosion behavior of additively manufactured SS316L-SS431 graded material [J]. Addit. Manuf., 2020, 35: 101295
75 Li Q Q, Wen Y J, Zhang B C, et al. Research progress of functional graded alloy prepared by additive manufacturing technology [J]. J. Mech. Eng., 2021, 57: 184
doi: 10.3901/JME.2021.22.184
75 李祺祺, 温耀杰, 张百成 等. 梯度功能合金的增材制造技术研究进展 [J]. 机械工程学报, 2021, 57: 184
doi: 10.3901/JME.2021.22.184
76 Wang D, Deng G W, Yang Y Q, et al. Interface microstructure and mechanical properties of selective laser melted multilayer functionally graded materials [J]. J. Cent. South Univ., 2021, 28: 1155
doi: 10.1007/s11771-021-4687-9
77 Zhang B C, Zhang L, Ren S B, et al. Device and method for preparing gradient material based on selective laser melting technology [P]. Chin Pat, CN108480630B, 2019
77 张百成, 章 林, 任淑彬 等. 一种基于选区激光熔化技术制备梯度材料的装置及方法 [P]. 中国专利, CN108480630B, 2019)
78 Collins P C, Banerjee R, Banerjee S, et al. Laser deposition of compositionally graded titanium-vanadium and titanium-molybdenum alloys [J]. Mater. Sci. Eng., 2003, A352: 118
[1] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[2] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[3] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[4] 卢楠楠, 郭以沫, 杨树林, 梁静静, 周亦胄, 孙晓峰, 李金国. 激光增材修复单晶高温合金的热裂纹形成机制[J]. 金属学报, 2023, 59(9): 1243-1252.
[5] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[6] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[7] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[8] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[9] 穆亚航, 张雪, 陈梓名, 孙晓峰, 梁静静, 李金国, 周亦胄. 基于热力学计算与机器学习的增材制造镍基高温合金裂纹敏感性预测模型[J]. 金属学报, 2023, 59(8): 1075-1086.
[10] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[11] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[12] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[13] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[14] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[15] 吴欣强, 戎利建, 谭季波, 陈胜虎, 胡小锋, 张洋鹏, 张兹瑜. Pb-Bi腐蚀Si增强型铁素体/马氏体钢和奥氏体不锈钢的研究进展[J]. 金属学报, 2023, 59(4): 502-512.