Please wait a minute...
金属学报  2023, Vol. 59 Issue (1): 87-105    DOI: 10.11900/0412.1961.2022.00430
  综述 本期目录 | 过刊浏览 |
计算辅助高性能增材制造铝合金开发的研究现状与展望
高建宝1, 李志诚1, 刘佳1, 张金良2, 宋波2(), 张利军1()
1.中南大学 粉末冶金国家重点实验室 长沙 410083
2.华中科技大学 材料成形与模具技术国家重点实验室 武汉 430074
Current Situation and Prospect of Computationally Assisted Design in High-Performance Additive Manufactured Aluminum Alloys: A Review
GAO Jianbao1, LI Zhicheng1, LIU Jia1, ZHANG Jinliang2, SONG Bo2(), ZHANG Lijun1()
1.State Key Lab of Powder Metallurgy, Central South University, Changsha 410083, China
2.State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan 430074, China
引用本文:

高建宝, 李志诚, 刘佳, 张金良, 宋波, 张利军. 计算辅助高性能增材制造铝合金开发的研究现状与展望[J]. 金属学报, 2023, 59(1): 87-105.
Jianbao GAO, Zhicheng LI, Jia LIU, Jinliang ZHANG, Bo SONG, Lijun ZHANG. Current Situation and Prospect of Computationally Assisted Design in High-Performance Additive Manufactured Aluminum Alloys: A Review[J]. Acta Metall Sin, 2023, 59(1): 87-105.

全文: PDF(4990 KB)   HTML
摘要: 

增材制造技术为高强铝合金复杂零部件的制造带来了前所未有的机遇,但目前增材制造铝合金体系仍局限于可铸造和可焊接的Al-Si系合金,制约了高性能增材制造铝合金的快速发展。近年来,不同尺度的计算方法逐步用于辅助高性能增材制造铝合金的开发。本文详细综述了国内外学者在计算辅助增材制造铝合金设计与制备领域的研究成果,列举了原子、介观和宏观尺度计算模拟及机器学习等计算方法辅助增材制造铝合金设计的代表性案例,分析了不同计算方法辅助合金设计的策略,并指出其不足。最后,针对如何推动多尺度计算在高性能增材制造铝合金开发中的应用进行了展望,并指出其发展方向。

关键词 增材制造铝合金计算热力学相场模拟机器学习集成计算材料工程多目标优化    
Abstract

Additive manufacturing technology has greatly increased opportunities in the production of high-strength aluminum alloy complex parts. However, current additive manufactured aluminum alloy systems are still limited to castable and weldable Al-Si alloys. This impedes the development of high-performance additive manufactured aluminum alloys. Recently, various computational techniques at different scales have been gradually used to promote the development of high-performance additive manufactured aluminum alloys. This paper summarizes the research achievements in the field of computationally-assisted design of additive manufactured aluminum alloys and their preparation from domestic and foreign scholars and presents representative cases from atomic, mesoscopic, and macroscopic scales and machine learning. The different calculation methods used to assist alloy designs are analyzed and their shortcomings are presented. Finally, the prospect on how to improve the application of multi-scale computation techniques in the development of high-performance additive manufactured aluminum alloys is presented, and some specific development directions are also clarified.

Key wordsadditive manufactured aluminum alloy    computational thermodynamics    phase-field simulation    machine learning    integrated computational materials engineering    multi-objective optimization
收稿日期: 2022-08-31     
ZTFLH:  TG146.2  
基金资助:国家重点研发计划项目(2019YFB2006500);国家自然科学基金项目(51922044);广西重点研发计划项目(AB21220028);湖南省自然科学基金杰出青年项目(2021JJ10062);中国博士后科学基金面上项目(2021M701293)
作者简介: 高建宝,男,1993年生,博士生
图1  Al-X固溶体中固溶强化效果随溶质浓度的变化,及Al-X固溶体中各元素的最大平衡固溶度与其在400℃下Al中扩散系数的关系[37]
图2  通过分子动力学构建的微型选区激光熔化(μ-SLM)模型处理Al纳米粉末床的最终凝固结构[41]
图3  计算热力学驱动的增材制造铝合金设计策略流程[53]
图4  热裂中具有特征温度的凝固组织示意图[60]及AlSi10Mg、6061、7075铝合金的Scheil-Gulliver凝固模拟结果和脆性温度范围ΔTBTR的比较[54]
图5  Kou准则中裂纹敏感因子示意图[55,66]及其在变形铝合金中的预测结果[67]与实验结果[62,63]对比
图6  Si改性Al7075合金凝固路径、裂纹敏感性计算结果及SLM工艺制备合金的微观组织形貌[58]
图7  一种用于SLM的新型无裂纹Ti改性Al-Cu-Mg合金设计流程[21]

Solute

Element

EquilibriumMaximum extended solubility
Maximum solubilityCe or Cp
EutecticZn66.488.538-43.5
Ag23.837.025-40
Mg16.336.436.8-40
Cu2.517.517-18
Si1.612.010-16
Mn0.90.956-10
Fe~0.020.94-6
Co< 0.010.450.5-5
Ni~0.022.81.2-7.7
Ce~0.012.61.9
PeritecticTi0.60.060.2-2
Cr0.40.195-7
V0.250.051.4-2
Zr0.090.031.2-1.5
Mo0.070.031.0-1.5
W0.020.010.9-1.9
表1  平衡和快速凝固条件(约106 K/s)下二元铝合金中溶质的溶解度极限值[79] (atomic fraction / %)
图8  有限界面耗散模型用于研究快速凝固条件下Al-Cu体系的溶质截留现象及动力学相图[102]
图9  激光熔池凝固过程中晶粒结构随时间的演变[98]
图10  Al-Cu-Mg合金裂纹形成机理[32]
图11  基于物理信息的机器学习方法设计无裂纹3D打印件流程图[33]
1 Li Q, Wang F D, Wang G Q, et al. Wire and arc additive manufacturing of lightweight metal components in aeronautics and astronautics [J]. Aeronaut. Manuf. Technol., 2018, 61(3): 74
1 李 权, 王福德, 王国庆 等. 航空航天轻质金属材料电弧熔丝增材制造技术 [J]. 航空制造技术, 2018, 61(3): 74
2 Qin Y L, Sun B H, Zhang H, et al. Development of selective laser melted aluminum alloys and aluminum matrix composites in aerospace field [J]. Chin. J. Lasers, 2021, 48: 1402002
doi: 10.3788/CJL202148.1402002
2 秦艳利, 孙博慧, 张 昊 等. 选区激光熔化铝合金及其复合材料在航空航天领域的研究进展 [J]. 中国激光, 2021, 48: 1402002
3 Zhu H H, Liao H L. Research status of selective laser melting of high strength aluminum alloy [J]. Laser Optoelectron. Prog., 2018, 55: 011402
3 朱海红, 廖海龙. 高强铝合金的激光选区熔化成形研究现状 [J]. 激光与光电子学进展, 2018, 55: 011402
4 Zhang J L, Song B, Yang L, et al. Microstructure evolution and mechanical properties of TiB/Ti6Al4V gradient-material lattice structure fabricated by laser powder bed fusion [J]. Composites, 2020, 202B: 108417
5 Zhang J L, Song B, Wei Q S, et al. A review of selective laser melting of aluminum alloys: Processing, microstructure, property and developing trends [J]. J. Mater. Sci. Technol., 2019, 35: 270
doi: 10.1016/j.jmst.2018.09.004
6 Kotadia H R, Gibbons G, Das A, et al. A review of laser powder bed fusion additive manufacturing of aluminium alloys: Microstructure and properties [J]. Addit. Manuf., 2021, 46: 102155
7 Kimura T, Nakamoto T. Microstructures and mechanical properties of A356 (AlSi7Mg0.3) aluminum alloy fabricated by selective laser melting [J]. Mater. Des., 2016, 89: 1294
doi: 10.1016/j.matdes.2015.10.065
8 Wang M, Song B, Wei Q S, et al. Improved mechanical properties of AlSi7Mg/nano-SiCp composites fabricated by selective laser melting [J]. J. Alloys Compd., 2019, 810: 151926
doi: 10.1016/j.jallcom.2019.151926
9 Yan Q, Song B, Shi Y S. Comparative study of performance comparison of AlSi10Mg alloy prepared by selective laser melting and casting [J]. J. Mater. Sci. Technol., 2020, 41: 199
doi: 10.1016/j.jmst.2019.08.049
10 Van Cauwenbergh P, Samaee V, Thijs L, et al. Unravelling the multi-scale structure-property relationship of laser powder bed fusion processed and heat-treated AlSi10Mg [J]. Sci. Rep., 2021, 11: 6423
doi: 10.1038/s41598-021-85047-2 pmid: 33742014
11 Li X P, Wang X J, Saunders M, et al. A selective laser melting and solution heat treatment refined Al-12Si alloy with a controllable ultrafine eutectic microstructure and 25% tensile ductility [J]. Acta Mater., 2015, 95: 74
doi: 10.1016/j.actamat.2015.05.017
12 Suryawanshi J, Prashanth K G, Scudino S, et al. Simultaneous enhancements of strength and toughness in an Al-12Si alloy synthesized using selective laser melting [J]. Acta Mater., 2016, 115: 285
doi: 10.1016/j.actamat.2016.06.009
13 Starke Jr E A, Staley J T. Application of modern aluminum alloys to aircraft [J]. Prog. Aerosp. Sci., 1996, 32: 131
doi: 10.1016/0376-0421(95)00004-6
14 Roberts C E, Bourell D, Watt T, et al. A novel processing approach for additive manufacturing of commercial aluminum alloys [J]. Phys. Procedia, 2016, 83: 909
doi: 10.1016/j.phpro.2016.08.095
15 Del Guercio G, McCartney D G, Aboulkhair N T, et al. Cracking behaviour of high-strength AA2024 aluminium alloy produced by laser powder bed fusion [J]. Addit. Manuf., 2022, 54: 102776
16 Panwisawas C, Tang Y T, Reed R C. Metal 3D printing as a disruptive technology for superalloys [J]. Nat. Commun., 2020, 11: 2327
doi: 10.1038/s41467-020-16188-7 pmid: 32393778
17 Yamasaki S, Okuhira T, Mitsuhara M, et al. Effect of Fe addition on heat-resistant aluminum alloys produced by selective laser melting [J]. Metals, 2019, 9: 468
doi: 10.3390/met9040468
18 Nalivaiko A Y, Arnautov A N, Zmanovsky S V, et al. Al-Si-Cu and Al-Si-Cu-Ni alloys for additive manufacturing: Composition, morphology and physical characteristics of powders [J]. Mater. Res. Express, 2019, 6: 086536
19 Zhang B, Wei W, Shi W, et al. Effect of heat treatment on the microstructure and mechanical properties of Er-containing Al-7Si-0.6Mg alloy by laser powder bed fusion [J]. J. Mater. Res. Technol., 2022, 18: 3073
doi: 10.1016/j.jmrt.2022.04.023
20 Tan Q Y, Zhang J Q, Sun Q, et al. Inoculation treatment of an additively manufactured 2024 aluminium alloy with titanium nanoparticles [J]. Acta Mater., 2020, 196: 1
doi: 10.1016/j.actamat.2020.06.026
21 Zhang J L, Gao J B, Song B, et al. A novel crack-free Ti-modified Al-Cu-Mg alloy designed for selective laser melting [J]. Addit. Manuf., 2021, 38: 101829
22 Martin J H, Yahata B D, Hundley J M, et al. 3D printing of high-strength aluminium alloys [J]. Nature, 2017, 549: 365
doi: 10.1038/nature23894
23 Nie X J, Zhang H, Zhu H H, et al. Effect of Zr content on formability, microstructure and mechanical properties of selective laser melted Zr modified Al-4.24Cu-1.97Mg-0.56Mn alloys [J]. J. Alloys Compd., 2018, 764: 977
doi: 10.1016/j.jallcom.2018.06.032
24 Li G C, Brodu E, Soete J, et al. Exploiting the rapid solidification potential of laser powder bed fusion in high strength and crack-free Al-Cu-Mg-Mn-Zr alloys [J]. Addit. Manuf., 2021, 47: 102210
25 Li R D, Wang M B, Li Z M, et al. Developing a high-strength Al-Mg-Si-Sc-Zr alloy for selective laser melting: Crack-inhibiting and multiple strengthening mechanisms [J]. Acta Mater., 2020, 193: 83
doi: 10.1016/j.actamat.2020.03.060
26 Minasyan T, Hussainova I. Laser powder-bed fusion of ceramic particulate reinforced aluminum alloys: A review [J]. Materials, 2022, 15: 2467
doi: 10.3390/ma15072467
27 Zhou S Y, Su Y, Wang H, et al. Selective laser melting additive manufacturing of 7xxx series Al-Zn-Mg-Cu alloy: Cracking elimination by co-incorporation of Si and TiB2 [J]. Addit. Manuf., 2020, 36: 101458
28 Plotkowski A, Rios O, Sridharan N, et al. Evaluation of an Al-Ce alloy for laser additive manufacturing [J]. Acta Mater., 2017, 126: 507
doi: 10.1016/j.actamat.2016.12.065
29 Lu Z, Zhang L J. Thermodynamic description of the quaternary Al-Si-Mg-Sc system and its application to the design of novel Sc-additional A356 alloys [J]. Mater. Des., 2017, 116: 427
doi: 10.1016/j.matdes.2016.12.034
30 Yi W, Liu G C, Lu Z, et al. Efficient alloy design of Sr-modified A356 alloys driven by computational thermodynamics and machine learning [J]. J. Mater. Sci. Technol., 2022, 112: 277
doi: 10.1016/j.jmst.2021.09.061
31 Wei M, Tang Y, Zhang L J, et al. Phase-field simulation of microstructure evolution in industrial A2214 alloy during solidification [J]. Metall. Mater. Trans., 2015, 46A: 3182
32 Zhang J L, Yuan W H, Song B, et al. Towards understanding metallurgical defect formation of selective laser melted wrought aluminum alloys [J]. Adv. Powder Mater., 2022, 1: 100035
33 Mondal B, Mukherjee T, DebRoy T. Crack free metal printing using physics informed machine learning [J]. Acta Mater., 2022, 226: 117612
doi: 10.1016/j.actamat.2021.117612
34 Park S, Kayani S H, Euh K, et al. High strength aluminum alloys design via explainable artificial intelligence [J]. J. Alloys Compd., 2022, 903: 163828
doi: 10.1016/j.jallcom.2022.163828
35 Van de Walle C G, Neugebauer J. First-principles calculations for defects and impurities: Applications to III-nitrides [J]. J. Appl. Phys., 2004, 95: 3851
doi: 10.1063/1.1682673
36 Uesugi T, Higashi K. First-principles studies on lattice constants and local lattice distortions in solid solution aluminum alloys [J]. Comput. Mater. Sci., 2013, 67: 1
37 Michi R A, Plotkowski A, Shyam A, et al. Towards high-temperature applications of aluminium alloys enabled by additive manufacturing [J]. Int. Mater. Rev., 2022, 67: 298
doi: 10.1080/09506608.2021.1951580
38 Andersen H C. Molecular dynamics simulations at constant pressure and/or temperature [J]. J. Chem. Phys., 1980, 72: 2384
39 Nandy J, Sahoo S, Yedla N, et al. Molecular dynamics simulation of coalescence kinetics and neck growth in laser additive manufacturing of aluminum alloy nanoparticles [J]. J. Mol. Model., 2020, 26: 125
doi: 10.1007/s00894-020-04395-4 pmid: 32388665
40 Mahata A, Zaeem M A, Baskes M I. Understanding homogeneous nucleation in solidification of aluminum by molecular dynamics simulations [J]. Modell. Simul. Mater. Sci. Eng., 2018, 26: 025007
41 Kurian S, Mirzaeifar R. Selective laser melting of aluminum nano-powder particles, a molecular dynamics study [J]. Addit. Manuf., 2020, 35: 101272
42 Zeng Q, Wang L J, Jiang W G. Molecular dynamics simulations of the tensile mechanical responses of selective laser-melted aluminum with different crystalline forms [J]. Crystals, 2021, 11: 1388
doi: 10.3390/cryst11111388
43 Chen H L, Chen Q, Engström A. Development and applications of the TCAL aluminum alloy database [J]. Calphad, 2018, 62: 154
doi: 10.1016/j.calphad.2018.05.010
44 Kaufman L, Bernstein H. Computer Calculation of Phase Diagrams[M]. New York: Academic Press Inc., 1970: 1
45 Ågren J. Numerical treatment of diffusional reactions in multicomponent alloys [J]. J. Phys. Chem. Solids, 1982, 43: 385
doi: 10.1016/0022-3697(82)90209-8
46 Zhang L J, Du Y, Steinbach I, et al. Diffusivities of an Al-Fe-Ni melt and their effects on the microstructure during solidification [J]. Acta Mater., 2010, 58: 3664
doi: 10.1016/j.actamat.2010.03.002
47 Zhong J, Chen L, Zhang L J. Automation of diffusion database development in multicomponent alloys from large number of experimental composition profiles [J]. npj Comput. Mater., 2021, 7: 35
doi: 10.1038/s41524-021-00500-0
48 Hallstedt B, Dupin N, Hillert M, et al. Thermodynamic models for crystalline phases. Composition dependent models for volume, bulk modulus and thermal expansion [J]. Calphad, 2007, 31: 28
doi: 10.1016/j.calphad.2006.02.008
49 Zhang C, Du Y, Liu S H, et al. Thermal conductivity of Al-Cu-Mg-Si alloys: Experimental measurement and CALPHAD modeling [J]. Thermochim. Acta, 2016, 635: 8
doi: 10.1016/j.tca.2016.04.019
50 Zhang F, Du Y, Liu S H, et al. Modeling of the viscosity in the Al-Cu-Mg-Si system: Database construction [J]. Calphad, 2015, 49: 79
doi: 10.1016/j.calphad.2015.04.001
51 Shang Y J, Yang S L, Zhang L J. Computational modeling of Young's modulus in polycrystal two-phase alloys: Application in γ + γ' Ni-Al alloys [J]. Materialia, 2019, 8: 100500
doi: 10.1016/j.mtla.2019.100500
52 Yang S L, Zhong J, Wang J, et al. A novel computational model for isotropic interfacial energies in multicomponent alloys and its coupling with phase-field model with finite interface dissipation [J]. J. Mater. Sci. Technol., 2023, 133: 111
doi: 10.1016/j.jmst.2022.04.057
53 Yi W, Liu G C, Gao J B, et al. Boosting for concept design of casting aluminum alloys driven by combining computational thermodynamics and machine learning techniques [J]. J. Mater. Inf., 2021, 1: 11
54 Dreano A, Favre J, Desrayaud C, et al. Computational design of a crack-free aluminum alloy for additive manufacturing [J]. Addit. Manuf., 2022, 55: 102876
55 Kou S. A criterion for cracking during solidification [J]. Acta Mater., 2015, 88: 366
doi: 10.1016/j.actamat.2015.01.034
56 Maxwell I, Hellawell A. A simple model for grain refinement during solidification [J]. Acta Metall., 1975, 23: 229
doi: 10.1016/0001-6160(75)90188-1
57 Easton M A, StJohn D H. A model of grain refinement incorporating alloy constitution and potency of heterogeneous nucleant particles [J]. Acta Mater., 2001, 49: 1867
doi: 10.1016/S1359-6454(00)00368-2
58 Li G C, Jadhav S D, Martín A, et al. Investigation of solidification and precipitation behavior of Si-modified 7075 aluminum alloy fabricated by laser-based powder bed fusion [J]. Metall. Mater. Trans., 2021, 52A: 194
59 Sha J W, Li M X, Yang L Z, et al. Si-assisted solidification path and microstructure control of 7075 aluminum alloy with improved mechanical properties by selective laser melting [J]. Acta Metall. Sin. (Engl. Lett.), 2022, 35: 1424
doi: 10.1007/s40195-022-01419-1
60 Santillana B, Boom R, Eskin D, et al. High-temperature mechanical behavior and fracture analysis of a low-carbon steel related to cracking [J]. Metall. Mater. Trans., 2012, 43A: 5048
61 Scheil E. Bemerkungen zur schichtkristallbildung [J]. Int. J. Mater. Res., 1942, 34: 70
doi: 10.1515/ijmr-1942-340303
62 Dowd J D. Weld cracking of aluminum alloys [J]. Weld. J., 1952, 31: 448-s
63 Dudas J H, Collins F R. Preventing weld cracks in high-strength aluminum alloys [J]. Weld. J., 1966, 45: 241-s
64 Liu J W, Kou S. Susceptibility of ternary aluminum alloys to cracking during solidification [J]. Acta Mater., 2017, 125: 513
doi: 10.1016/j.actamat.2016.12.028
65 Soysal T, Kou S. A simple test for assessing solidification cracking susceptibility and checking validity of susceptibility prediction [J]. Acta Mater., 2018, 143: 181
doi: 10.1016/j.actamat.2017.09.065
66 Liu J W, Kou S. Crack susceptibility of binary aluminum alloys during solidification [J]. Acta Mater., 2016, 110: 84
doi: 10.1016/j.actamat.2016.03.030
67 Kou S. Predicting susceptibility to solidification cracking and liquation cracking by CALPHAD [J]. Metals, 2021, 11: 1442
doi: 10.3390/met11091442
68 Tang Z, Vollertsen F. Influence of grain refinement on hot cracking in laser welding of aluminum [J]. Weld. World, 2014, 58: 355
doi: 10.1007/s40194-014-0121-3
69 Greer A L, Bunn A M, Tronche A, et al. Modelling of inoculation of metallic melts: Application to grain refinement of aluminium by Al-Ti-B [J]. Acta Mater., 2000, 48: 2823
doi: 10.1016/S1359-6454(00)00094-X
70 StJohn D H, Qian M, Easton M A, et al. The interdependence theory: The relationship between grain formation and nucleant selection [J]. Acta Mater., 2011, 59: 4907
doi: 10.1016/j.actamat.2011.04.035
71 Gäumann M, Trivedi R, Kurz W. Nucleation ahead of the advancing interface in directional solidification [J]. Mater. Sci. Eng., 1997, A226-228: 763
72 Chai G, Bäackerud L, Arnberg L. Relation between grain size and coherency parameters in aluminium alloys [J]. Mater. Sci. Technol., 1995, 11: 1099
doi: 10.1179/mst.1995.11.11.1099
73 Quested T E, Dinsdale A T, Greer A L. Thermodynamic modelling of growth-restriction effects in aluminium alloys [J]. Acta Mater., 2005, 53: 1323
doi: 10.1016/j.actamat.2004.11.024
74 Men H, Fan Z. Effects of solute content on grain refinement in an isothermal melt [J]. Acta Mater., 2011, 59: 2704
doi: 10.1016/j.actamat.2011.01.008
75 Qi X B, Chen Y, Kang X H, et al. An analytical approach for predicting as-cast grain size of inoculated aluminum alloys [J]. Acta Mater., 2015, 99: 337
doi: 10.1016/j.actamat.2015.08.006
76 Schmid-Fetzer R, Kozlov A. Thermodynamic aspects of grain growth restriction in multicomponent alloy solidification [J]. Acta Mater., 2011, 59: 6133
doi: 10.1016/j.actamat.2011.06.026
77 Wu G H, Tong X, Jiang R, et al. Grain refinement of as-cast Mg-RE alloys: Research progress and future prospect [J]. Acta Metall. Sin., 2022, 58: 385
doi: 10.11900/0412.1961.2021.00519
77 吴国华, 童 鑫, 蒋 锐 等. 铸造Mg-RE合金晶粒细化行为研究现状与展望 [J]. 金属学报, 2022, 58: 385
doi: 10.11900/0412.1961.2021.00519
78 Liu Z Y, Zhao D D, Wang P, et al. Additive manufacturing of metals: Microstructure evolution and multistage control [J]. J. Mater. Sci. Technol., 2022, 100: 224
doi: 10.1016/j.jmst.2021.06.011
79 Froes F H, Kim Y W, Hehmann F. Rapid solidification of Al, Mg and Ti [J]. JOM, 1987, 39(8): 14
80 Takata N, Liu M L, Kodaira H, et al. Anomalous strengthening by supersaturated solid solutions of selectively laser melted Al-Si-based alloys [J]. Addit. Manuf., 2020, 33: 101152
81 Ahmad N A, Wheeler A A, Boettinger W J, et al. Solute trapping and solute drag in a phase-field model of rapid solidification [J]. Phys. Rev., 1998, 58E: 3436
82 Aziz M J. An atomistic model of solute trapping [A]. Rapid Solidification Processing: Principles and Technologies III: Proceedings of the Third Conference on Rapid Solidification Processing Held at the National Bureau of Standards [C]. Gaithersburg, Maryland: The Bureau, 1982: 113
83 Aziz M J. Model for solute redistribution during rapid solidification [J]. J. Appl. Phys., 1982, 53: 1158
doi: 10.1063/1.329867
84 Aziz M J, Kaplan T. Continuous growth model for interface motion during alloy solidification [J]. Acta Metall., 1988, 36: 2335
doi: 10.1016/0001-6160(88)90333-1
85 Froes F H, Kim Y W, Krishnamurthy S. Rapid solidification of lightweight metal alloys [J]. Mater. Sci. Eng., 1989, A117: 19
86 Fiocchi J, Tuissi A, Biffi C A. Heat treatment of aluminium alloys produced by laser powder bed fusion: A review [J]. Mater. Des., 2021, 204: 109651
doi: 10.1016/j.matdes.2021.109651
87 Liu G C, Gao J B, Che C, et al. Optimization of casting means and heat treatment routines for improving mechanical and corrosion resistance properties of A356-0.54Sc casting alloy [J]. Mater. Today Commun., 2020, 24: 101227
88 Geng R W, Du J, Wei Z Y, et al. Current research status of phase field simulation for microstructures of additively manufactured metals [J]. Mater. Rep., 2018, 32: 1145
88 耿汝伟, 杜 军, 魏正英 等. 金属增材制造中微观组织相场法模拟研究进展 [J]. 材料导报, 2018, 32: 1145
89 DebRoy T, Mukherjee T, Wei H L, et al. Metallurgy, mechanistic models and machine learning in metal printing [J]. Nat. Rev. Mater., 2020, 6: 48
doi: 10.1038/s41578-020-00236-1
90 Wheeler A A, Boettinger W J, McFadden G B. Phase-field model of solute trapping during solidification [J]. Phys. Rev., 1993, 47E: 1893
91 Kim S G, Kim W T, Suzuki T. Phase-field model for binary alloys [J]. Phys. Rev., 1999, 60E: 7186
92 Steinbach I, Pezzolla F, Nestler B, et al. A phase field concept for multiphase systems [J]. Physica, 1996, 94D: 135
93 Steinbach I, Zhang L J, Plapp M. Phase-field model with finite interface dissipation [J]. Acta Mater., 2012, 60: 2689
doi: 10.1016/j.actamat.2012.01.035
94 Zhang L J, Steinbach I. Phase-field model with finite interface dissipation: Extension to multi-component multi-phase alloys [J]. Acta Mater., 2012, 60: 2702
doi: 10.1016/j.actamat.2012.02.032
95 Zhang Z, Yao X X, Ge P. Phase-field-model-based analysis of the effects of powder particle on porosities and densities in selective laser sintering additive manufacturing [J]. Int. J. Mech. Sci., 2020, 166: 105230
doi: 10.1016/j.ijmecsci.2019.105230
96 Yang Y Y W, Ragnvaldsen O, Bai Y, et al. 3D non-isothermal phase-field simulation of microstructure evolution during selective laser sintering [J]. npj Comput. Mater., 2019, 5: 81
doi: 10.1038/s41524-019-0219-7
97 Yang M, Wang L, Yan W T. Phase-field modeling of grain evolution in additive manufacturing with addition of reinforcing particles [J]. Addit. Manuf., 2021, 47: 102286
98 Jiang P, Gao S, Geng S N, et al. Multi-physics multi-scale simulation of the solidification process in the molten pool during laser welding of aluminum alloys [J]. Int. J. Heat Mass Transfer, 2020, 161: 120316
doi: 10.1016/j.ijheatmasstransfer.2020.120316
99 Gunasegaram D R, Steinbach I. Modelling of microstructure formation in metal additive manufacturing: Recent progress, research gaps and perspectives [J]. Metals, 2021, 11: 1425
doi: 10.3390/met11091425
100 Karayagiz K, Johnson L, Seede R, et al. Finite interface dissipation phase field modeling of Ni-Nb under additive manufacturing conditions [J]. Acta Mater., 2020, 185: 320
doi: 10.1016/j.actamat.2019.11.057
101 O'Toole P I, Patel M J, Tang C, et al. Multiscale simulation of rapid solidification of an aluminium-silicon alloy under additive manufacturing conditions [J]. Addit. Manuf., 2021, 48: 102353
102 Yang X, Zhang L J, Sobolev S, et al. Kinetic phase diagrams of ternary Al-Cu-Li system during rapid solidification: A phase-field study [J]. Materials, 2018, 11: 260
doi: 10.3390/ma11020260
103 Li Y L, Gu D D. Parametric analysis of thermal behavior during selective laser melting additive manufacturing of aluminum alloy powder [J]. Mater. Des., 2014, 63: 856
doi: 10.1016/j.matdes.2014.07.006
104 Geng R W, Du J, Wei Z Y, et al. Modelling and experimental observation of the deposition geometry and microstructure evolution of aluminum alloy fabricated by wire-arc additive manufacturing [J]. J. Manuf. Process., 2021, 64: 369
doi: 10.1016/j.jmapro.2021.01.037
105 Vastola G, Zhang G, Pei Q X, et al. Controlling of residual stress in additive manufacturing of Ti6Al4V by finite element modeling [J]. Addit. Manuf., 2016, 12: 231
106 Campoli G, Borleffs M S, Yavari S A, et al. Mechanical properties of open-cell metallic biomaterials manufactured using additive manufacturing [J]. Mater. Des., 2013, 49: 957
doi: 10.1016/j.matdes.2013.01.071
107 Jordan M I, Mitchell T M. Machine learning: Trends, perspectives, and prospects [J]. Science, 2015, 349: 255
doi: 10.1126/science.aaa8415 pmid: 26185243
108 Johnson N S, Vulimiri P S, To A C, et al. Invited review: Machine learning for materials developments in metals additive manufacturing [J]. Addit. Manuf., 2020, 36: 101641
109 Du Y, Mukherjee T, Mitra P, et al. Machine learning based hierarchy of causative variables for tool failure in friction stir welding [J]. Acta Mater., 2020, 192: 67
doi: 10.1016/j.actamat.2020.03.047
110 Silbernagel C, Aremu A, Ashcroft I. Using machine learning to aid in the parameter optimisation process for metal-based additive manufacturing [J]. Rapid Prototyp. J., 2020, 26: 625
doi: 10.1108/RPJ-08-2019-0213
111 Liu Q, Wu H K, Paul M J, et al. Machine-learning assisted laser powder bed fusion process optimization for AlSi10Mg: New microstructure description indices and fracture mechanisms [J]. Acta Mater., 2020, 201: 316
doi: 10.1016/j.actamat.2020.10.010
112 Caiazzo F, Caggiano A. Laser direct metal deposition of 2024 Al alloy: Trace geometry prediction via machine learning [J]. Materials, 2018, 11: 444
doi: 10.3390/ma11030444
113 Mishra R S, Thapliyal S. Design approaches for printability-performance synergy in Al alloys for laser-powder bed additive manufacturing [J]. Mater. Des., 2021, 204: 109640
doi: 10.1016/j.matdes.2021.109640
114 Gao J B, Zhong J, Liu G C, et al. A machine learning accelerated distributed task management system (Malac-Distmas) and its application in high-throughput CALPHAD computation aiming at efficient alloy design [J]. Adv. Powder Mater., 2022, 1: 100005
115 Xie J X, Su Y J, Xue D Z, et al. Machine learning for materials research and development [J]. Acta Metall. Sin., 2021, 57: 1343
doi: 10.11900/0412.1961.2021.00357
115 谢建新, 宿彦京, 薛德祯 等. 机器学习在材料研发中的应用 [J]. 金属学报, 2021, 57: 1343
doi: 10.11900/0412.1961.2021.00357
116 Dai R, Yang S L, Zhang T D, et al. High-throughput screening of optimal process parameters for PVD TiN coatings with best properties through a combination of 3-D quantitative phase-field simulation and hierarchical multi-objective optimization strategy [J]. Front. Mater., 2022, 9: 924294
doi: 10.3389/fmats.2022.924294
[1] 陈佳, 郭敏, 杨敏, 刘林, 张军. 新型钴基高温合金中W元素对蠕变组织和性能的影响[J]. 金属学报, 2023, 59(9): 1209-1220.
[2] 穆亚航, 张雪, 陈梓名, 孙晓峰, 梁静静, 李金国, 周亦胄. 基于热力学计算与机器学习的增材制造镍基高温合金裂纹敏感性预测模型[J]. 金属学报, 2023, 59(8): 1075-1086.
[3] 冀秀梅, 侯美伶, 王龙, 刘玠, 高克伟. 基于机器学习的中厚板变形抗力模型建模与应用[J]. 金属学报, 2023, 59(3): 435-446.
[4] 陈凯旋, 李宗烜, 王自东, Demange Gilles, 陈晓华, 张佳伟, 吴雪华, Zapolsky Helena. Cu-2.0Fe合金等温处理过程中富Fe析出相的形态演变[J]. 金属学报, 2023, 59(12): 1665-1674.
[5] 杨累, 赵帆, 姜磊, 谢建新. 机器学习辅助2000 MPa级弹簧钢成分和热处理工艺开发[J]. 金属学报, 2023, 59(11): 1499-1512.
[6] 戚晓勇, 柳文波, 何宗倍, 王一帆, 恽迪. UN核燃料烧结致密化过程的相场模拟[J]. 金属学报, 2023, 59(11): 1513-1522.
[7] 李赛, 杨泽南, 张弛, 杨志刚. 珠光体-奥氏体相变中扩散通道的相场法研究[J]. 金属学报, 2023, 59(10): 1376-1388.
[8] 何兴群, 付华栋, 张洪涛, 方继恒, 谢明, 谢建新. 机器学习辅助高性能银合金电接触材料的快速发现[J]. 金属学报, 2022, 58(6): 816-826.
[9] 赵婉辰, 郑晨, 肖斌, 刘行, 刘璐, 余童昕, 刘艳洁, 董自强, 刘轶, 周策, 吴洪盛, 路宝坤. 基于Bayesian采样主动机器学习模型的6061铝合金成分精细优化[J]. 金属学报, 2021, 57(6): 797-810.
[10] 谢建新, 宿彦京, 薛德祯, 姜雪, 付华栋, 黄海友. 机器学习在材料研发中的应用[J]. 金属学报, 2021, 57(11): 1343-1361.
[11] 孙正阳, 王昱天, 柳文波. 气孔与晶界相互作用的相场模拟[J]. 金属学报, 2020, 56(12): 1643-1653.
[12] 张金虎,徐东生,王云志,杨锐. 位错对Ti-6Al-4V合金α相形核及微织构形成的影响*[J]. 金属学报, 2016, 52(8): 905-915.
[13] 宋鹏程,柳文波,陈磊,张弛,杨志刚. 形状记忆合金Au30Cu25Zn45中热弹性马氏体相变的相场模拟*[J]. 金属学报, 2016, 52(8): 1000-1008.
[14] 荆涛, 帅三三, 汪明月, 郑启威. 镁合金凝固过程三维枝晶形貌和生长取向研究进展:三维实验表征和相场模拟*[J]. 金属学报, 2016, 52(10): 1279-1296.
[15] 柯常波, 周敏波, 张新平. Sn/Cu互连体系界面金属间化合物Cu6Sn5演化和生长动力学的相场法模拟*[J]. 金属学报, 2014, 50(3): 294-304.