Please wait a minute...
金属学报  2023, Vol. 59 Issue (1): 180-190    DOI: 10.11900/0412.1961.2022.00425
  研究论文 本期目录 | 过刊浏览 |
原位激光定向能量沉积NiTi形状记忆合金的微观结构和力学性能
陈斐1,2,3(), 邱鹏程1, 刘洋1,2, 孙兵兵4, 赵海生4, 沈强1
1.武汉理工大学 材料复合新技术国家重点实验室 武汉 430070
2.武汉理工大学 材料科学与工程国际化示范学院(材料与微电子学院) 武汉 430070
3 湖北隆中实验室 襄阳 441000
4 航发优材(镇江)增材制造有限公司 镇江 212132
Microstructure and Mechanical Properties of NiTi Shape Memory Alloys by In Situ Laser Directed Energy Deposition
CHEN Fei1,2,3(), QIU Pengcheng1, LIU Yang1,2, SUN Bingbing4, ZHAO Haisheng4, SHEN Qiang1
1.State Key Laboratory of Advance e Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
2.International School of Materials Science and Engineering (School of Materials and Microelectronics), Wuhan University of Technology, Wuhan 430070, China
3 Hubei Longzhong Laboratory, Xiangyang 441000, China
4 HFYC (Zhenjiang) Additive Manufacturing Co., Ltd., Zhenjiang 212132, China
引用本文:

陈斐, 邱鹏程, 刘洋, 孙兵兵, 赵海生, 沈强. 原位激光定向能量沉积NiTi形状记忆合金的微观结构和力学性能[J]. 金属学报, 2023, 59(1): 180-190.
Fei CHEN, Pengcheng QIU, Yang LIU, Bingbing SUN, Haisheng ZHAO, Qiang SHEN. Microstructure and Mechanical Properties of NiTi Shape Memory Alloys by In Situ Laser Directed Energy Deposition[J]. Acta Metall Sin, 2023, 59(1): 180-190.

全文: PDF(2852 KB)   HTML
摘要: 

以Ni粉与Ti粉为原料,采用激光定向能量沉积(LDED)技术制备NiTi形状记忆合金。利用XRD、物相拟合、SEM、EDS和DSC等测试方法,对NiTi合金的显微组织、物相含量和物相转变进行分析,随后采用压缩圆柱样品进行形状记忆效应测试,并评估其形状记忆效应。激光能量密度较低时,NiTi合金中产生大量Ni4Ti3相沉淀,随着激光能量密度增加,Ni4Ti3相消失。激光能量密度为20.0 J/mm2时,NiTi合金具有2878 MPa的压缩断裂强度与34.9%的压缩失效应变,且样品在循环20 cyc后具有88.2%形状记忆恢复率。

关键词 激光定向能量沉积激光原位合成NiTi形状记忆合金形状记忆效应    
Abstract

The NiTi alloy is a key material in aerospace and biomedical fields owing to its excellent superelasticity and high shape memory effect. Laser directed energy deposition (LDED), as an advanced additive manufacturing technology, made the preparation of NiTi alloys with high shape memory effect possible. In this study, the NiTi alloy was fabricated via LDED using Ni and Ti powder feedstock. The microstructure, phase content, and phase transformation of the alloy were analyzed by XRD, phase fitting, SEM, EDS, and DSC. Next, the shape memory effect was tested using compressed cylindrical samples. When the laser energy density was low, several Ni4Ti3 phases were produced in the NiTi alloy. The Ni4Ti3 phase disappeared with an increase in the laser energy density. When the laser energy density was 20.0 J/mm2, the NiTi alloy showed a high compressive breaking strength of 2878 MPa and a compression failure strain of 34.9%, and the sample also showed a shape recovery rate of 88.2% after 20 cyc of compression.

Key wordslaser directed energy deposition    laser in situ synthesis    NiTi shape memory alloy    shape memory effect
收稿日期: 2022-08-31     
ZTFLH:  TG139.6  
基金资助:国家自然科学基金项目(51972246);广东省重大基础与应用基础研究项目(2021B0301030001);湖北隆中实验室自主创新研究项目(2022ZZ-32)
作者简介: 邱鹏程,男,1996年生,硕士生
PowderNiTiFeCuCoCaMgHONC
Ni99.865-0.030.0080.0750.0080.002---0.012
Ti-99.927-----0.0010.0540.0050.013
表1  球形Ni粉和Ti粉的化学成分 (mass fraction / %)
图1  粉末颗粒的尺寸分布和形貌
图2  不同激光能量密度下NiTi合金的XRD谱及其物相拟合结果
图3  NiTi合金中B19?、B2和NiTi2相含量随激光能量密度的变化
图4  不同激光能量密度下NiTi合金的致密度及其x-z面形貌像
图5  不同激光能量密度下NiTi合金的SEM像
EPoint in Fig.5Atomic fraction of NiAtomic fraction of TiNi∶Ti
J·mm-2%%
20.0b157.442.61.34
b259.540.51.47
21.7d149.150.90.96
d257.842.21.37
23.3f148.651.40.95
f234.165.90.52
25.0h148.651.40.95
h236.663.40.58
表2  不同激光能量密度下NiTi合金的EDS分析结果
图6  不同激光能量密度下NiTi合金的TEM像和选区电子衍射花样
图7  不同激光能量密度下NiTi合金的DSC曲线
E / (J·mm-2)MsMfAsAf
20.068.937.271.9102.7
21.768.139.375.9107.1
23.371.340.076.5109.3
25.065.931.875.5111.2
表3  不同激光能量密度下NiTi合金相变温度 (oC)
图8  不同激光能量密度下NiTi合金的压缩应力-应变曲线
E / (J·mm-2)σc / MPaσUCS / MPaδ / %
20.0313287834.9
21.7334241027.9
23.3342238626.5
25.0443231213.6
表4  不同激光能量密度下NiTi合金常温压缩性能
图9  不同激光能量密度下NiTi合金20 cyc循环压缩应力-应变曲线
E / (J·mm-2)εrecεtotεSMEη
20.08.3833.6173.19088.2
21.77.3904.6103.93785.4
23.36.0225.9784.72979.1
25.06.5105.4904.05273.8
表5  不同激光能量密度下NiTi合金20 cyc循环压缩的形状记忆效应 (%)
1 Elahinia M H, Hashemi M, Tabesh M, et al. Manufacturing and processing of NiTi implants: A review [J]. Prog. Mater. Sci., 2012, 57: 911
doi: 10.1016/j.pmatsci.2011.11.001
2 Marattukalam J J, Singh A K, Datta S, et al. Microstructure and corrosion behavior of laser processed NiTi alloy [J]. Mater. Sci. Eng., 2015, C57: 309
3 Cho G B, Kim K W, Ahn H J, et al. Applications of Ti-Ni alloys for secondary batteries [J]. J. Alloys Compds., 2008, 449: 317
doi: 10.1016/j.jallcom.2006.01.129
4 Lu B W, Cui X F, Liu E B, et al. Influence of microstructure on phase transformation behavior and mechanical properties of plasma arc deposited shape memory alloy [J]. Mater. Sci. Eng., 2018, A736: 130
5 Krishna B V, Bose S, Bandyopadhyay A. Laser processing of net-shape NiTi shape memory alloy [J]. Metall. Mater. Trans., 2007, 38A: 1096
6 Yao C, Yin F X, Ji P G, et al. Effects of grain refinement on the microstructures and damping behaviors of a Cu-Al-Ni-Mn-Ti shape memory alloy [J]. Intermetallics, 2021, 138: 107315
doi: 10.1016/j.intermet.2021.107315
7 Marattukalam J J, Balla V K, Das M, et al. Effect of heat treatment on microstructure, corrosion, and shape memory characteristics of laser deposited NiTi alloy [J]. J. Alloys Compds., 2018, 744: 337
doi: 10.1016/j.jallcom.2018.01.174
8 Haberland C, Elahinia M, Walker J M, et al. On the development of high quality NiTi shape memory and pseudoelastic parts by additive manufacturing [J]. Smart Mater. Struct., 2014, 23: 104002
doi: 10.1088/0964-1726/23/10/104002
9 Otubo J, Rigo O D, Neto C M, et al. The effects of vacuum induction melting and electron beam melting techniques on the purity of NiTi shape memory alloys [J]. Mater. Sci. Eng., 2006, A438-440: 679
10 Saedi S, Turabi A S, Andani M T, et al. Thermomechanical characterization of Ni-rich NiTi fabricated by selective laser melting [J]. Smart Mater. Struct., 2016, 25: 035005
11 Zhao C Y, Liang H L, Luo S C, et al. The effect of energy input on reaction, phase transition and shape memory effect of NiTi alloy by selective laser melting [J]. J. Alloys Compds., 2020, 817: 153288
doi: 10.1016/j.jallcom.2019.153288
12 Zhang D Z, Li Y Z, Wang H, et al. Ultrasonic vibration-assisted laser directed energy deposition in-situ synthesis of NiTi alloys: Effects on microstructure and mechanical properties [J]. J. Manuf. Processes, 2020, 60: 328
doi: 10.1016/j.jmapro.2020.10.058
13 Frazier W E. Metal additive manufacturing: A review [J]. J. Mater. Eng. Perform., 2014, 23: 1917
doi: 10.1007/s11665-014-0958-z
14 Beyer C. Strategic implications of current trends in additive manufacturing [J]. J. Manuf. Sci. Eng., 2014, 136: 064701
15 Guo N N, Leu M C. Additive manufacturing: Technology, applications and research needs [J]. Front. Mech. Eng., 2013, 8: 215
doi: 10.1007/s11465-013-0248-8
16 Hassan M R, Mehrpouya M, Dawood S. Review of the machining difficulties of nickel-titanium based shape memory alloys [J]. Appl. Mech. Mater., 2014, 564: 533
doi: 10.4028/www.scientific.net/AMM.564.533
17 Kaynak Y. Machining and phase transformation response of room-temperature austenitic NiTi shape memory alloy [J]. J. Mater. Eng. Perform., 2014, 23: 3354
doi: 10.1007/s11665-014-1058-9
18 Liang X L, Liu Z Q, Wang B. State-of-the-art of surface integrity induced by tool wear effects in machining process of titanium and nickel alloys: A review [J]. Measurement, 2019, 132: 150
doi: 10.1016/j.measurement.2018.09.045
19 Kaynak Y, Karaca H E, Noebe R D, et al. The effect of active phase of the work material on machining performance of a NiTi shape memory alloy [J]. Metall. Mater. Trans., 2015, 46A: 2625
20 Kaynak Y, Huang B, Karaca H E, et al. Surface characteristics of machined NiTi shape memory alloy: The effects of cryogenic cooling and preheating conditions [J]. J. Mater. Eng. Perform., 2017, 26: 3597
doi: 10.1007/s11665-017-2791-7
21 Venkatalaxmi A, Padmavathi B S, Amaranath T. A general solution of unsteady Stokes equations [J]. Fluid Dyn. Res., 2004, 35: 229
doi: 10.1016/j.fluiddyn.2004.06.001
22 Bormann T, Schumacher R, Müller B, et al. Tailoring selective laser melting process parameters for NiTi implants [J]. J. Mater. Eng. Perform., 2012, 21: 2519
doi: 10.1007/s11665-012-0318-9
23 Bandyopadhyay A, Krishna B V, Xue W C, et al. Application of laser engineered net shaping (LENS) to manufacture porous and functionally graded structures for load bearing implants [J]. J. Mater. Sci. Mater. Med., 2009, 20(suppl.1) : S29
24 Vamsi Krishna B, Xue W C, Bose S, et al. Functionally graded Co-Cr-Mo coating on Ti-6Al-4V alloy structures [J]. Acta Biomater., 2008, 4: 697
pmid: 18054298
25 Lu H Z, Yang C, Luo X, et al. Ultrahigh-performance TiNi shape memory alloy by 4D printing [J]. Mater. Sci. Eng., 2019, A763: 138166
26 Hassanin H, Abena A, Elsayed M A, et al. 4D printing of NiTi auxetic structure with improved ballistic performance [J]. Micromachines (Basel), 2020, 11: 745
27 Wang C, Tan X P, Du Z, et al. Additive manufacturing of NiTi shape memory alloys using pre-mixed powders [J]. J. Mater. Process. Technol., 2019, 271: 152
doi: 10.1016/j.jmatprotec.2019.03.025
28 Walker J M, Haberland C, Taheri Andani M, et al. Process development and characterization of additively manufactured nickel-titanium shape memory parts [J]. J. Intell. Mater. Syst. Struct., 2016, 27: 2653
doi: 10.1177/1045389X16635848
29 Shayesteh Moghaddam N, Saghaian S E, Amerinatanzi A, et al. Anisotropic tensile and actuation properties of NiTi fabricated with selective laser melting [J]. Mater. Sci. Eng., 2018, A724: 220
30 Saedi S, Shayesteh Moghaddam N, Amerinatanzi A, et al. On the effects of selective laser melting process parameters on microstructure and thermomechanical response of Ni-rich NiTi [J]. Acta Mater., 2018, 144: 552
doi: 10.1016/j.actamat.2017.10.072
31 Zhang B C, Chen J, Coddet C. Microstructure and transformation behavior of in-situ shape memory alloys by selective laser melting Ti-Ni mixed powder [J]. J. Mater. Sci. Technol., 2013, 29: 863
doi: 10.1016/j.jmst.2013.05.006
32 Wang X B, Kustov S, Van Humbeeck J. A short review on the microstructure, transformation behavior and functional properties of NiTi shape memory alloys fabricated by selective laser melting [J]. Materials (Basel), 2018, 11: 1683
doi: 10.3390/ma11091683
33 Ma J, Franco B, Tapia G, et al. Spatial control of functional response in 4D-printed active metallic structures [J]. Sci. Rep., 2017, 7: 46707
doi: 10.1038/srep46707 pmid: 28429796
34 Saedi S, Turabi A S, Andani M T, et al. The influence of heat treatment on the thermomechanical response of Ni-rich NiTi alloys manufactured by selective laser melting [J]. J. Alloys Compds., 2016, 677: 204
doi: 10.1016/j.jallcom.2016.03.161
35 Otsuka K, Ren X. Physical metallurgy of Ti-Ni-based shape memory alloys [J]. Prog. Mater. Sci., 2005, 50: 511
doi: 10.1016/j.pmatsci.2004.10.001
36 Li S, Hassanin H, Attallah M M, et al. The development of TiNi-based negative Poisson's ratio structure using selective laser melting [J]. Acta Mater., 2016, 105: 75
doi: 10.1016/j.actamat.2015.12.017
37 Taheri Andani M, Haberland C, Walker J M, et al. Achieving biocompatible stiffness in NiTi through additive manufacturing [J]. J. Intell. Mater. Syst. Struct., 2016, 27: 2661
doi: 10.1177/1045389X16641199
38 Fan G L, Chen W, Yang S, et al. Origin of abnormal multi-stage martensitic transformation behavior in aged Ni-rich Ti-Ni shape memory alloys [J]. Acta Mater., 2004, 52: 4351
doi: 10.1016/j.actamat.2004.06.002
39 Jiang S Y, Zhang Y Q. Microstructure evolution and deformation behavior of as-cast NiTi shape memory alloy under compression [J]. Trans. Nonferrous Met. Soc. China, 2012, 22: 90
doi: 10.1016/S1003-6326(11)61145-X
40 Taheri Andani M, Saedi S, Turabi A S, et al. Mechanical and shape memory properties of porous Ni50.1Ti49.9 alloys manufactured by selective laser melting [J]. J. Mech. Behav. Biomed. Mater., 2017, 68: 224
doi: 10.1016/j.jmbbm.2017.01.047
41 Kim J I, Miyazaki S. Effect of nano-scaled precipitates on shape memory behavior of Ti-50.9at.%Ni alloy [J]. Acta Mater., 2005, 53: 4545
doi: 10.1016/j.actamat.2005.06.009
42 Kim Y W, Do D. Shape memory characteristics of highly porous Ti-rich TiNi alloys [J]. Mater. Lett., 2016, 162: 1
doi: 10.1016/j.matlet.2015.09.101
43 Mohd Jani J, Leary M, Subic A, et al. A review of shape memory alloy research, applications and opportunities [J]. Mater. Des., 2014, 56: 1078
doi: 10.1016/j.matdes.2013.11.084
44 Sam J, Franco B, Ma J, et al. Tensile actuation response of additively manufactured nickel-titanium shape memory alloys [J]. Scr. Mater., 2018, 146: 164
doi: 10.1016/j.scriptamat.2017.11.013
[1] 杨超, 卢海洲, 马宏伟, 蔡潍锶. 选区激光熔化NiTi形状记忆合金研究进展[J]. 金属学报, 2023, 59(1): 55-74.
[2] 张鑫, 崔博, 孙斌, 赵旭, 张欣, 刘庆锁, 董治中. Y元素对Cu-Al-Ni高温形状记忆合金性能的影响[J]. 金属学报, 2022, 58(8): 1065-1071.
[3] 左良, 李宗宾, 闫海乐, 杨波, 赵骧. 多晶Ni-Mn-X相变合金的织构化与功能行为[J]. 金属学报, 2021, 57(11): 1396-1415.
[4] 贺志荣, 吴佩泽, 刘康凯, 冯辉, 杜雨青, 冀荣耀. 激冷Ti-47Ni合金薄带的组织、相变和形状记忆行为[J]. 金属学报, 2018, 54(8): 1157-1164.
[5] 刘洪喜,李正学,张晓伟,谭军,蒋业华. 热处理对钛合金表面激光原位合成高铌Ti-Al金属间化合物涂层高温抗氧化行为的影响[J]. 金属学报, 2017, 53(2): 201-210.
[6] 柯常波,曹姗姗,马骁,黄平,张新平. NiTi形状记忆合金中Ni4Ti3共格沉淀相自催化生长效应的相场模拟[J]. 金属学报, 2013, 49(1): 115-122.
[7] 江鸿杰 柯常波 曹姗姗 马骁 张新平. 纳米SiC颗粒增强NiTi形状记忆复合材料制备及其力学性能和阻尼行为[J]. 金属学报, 2011, 47(9): 1105-1111.
[8] 柯常波 马骁 张新平. 孔隙对NiTi形状记忆合金中B2-R相变影响的相场模拟[J]. 金属学报, 2011, 47(2): 129-139.
[9] 柯常波 马骁 张新平. 外应力对NiTi合金中共格Ni4Ti3沉淀相长大行为影响的相场法模拟[J]. 金属学报, 2010, 46(8): 921-929.
[10] 贺志荣 王芳. 热处理对Ti-Ni-Cr低温超弹性合金相变行为的影响[J]. 金属学报, 2010, 46(3): 329-333.
[11] 柯常波 马骁 张新平. NiTi形状记忆合金中共格Ni4Ti3沉淀相生长动力学行为的相场法模拟[J]. 金属学报, 2010, 46(1): 84-90.
[12] 游素琴 崔玉亭 武亮 孔春阳 马勇 杨晓红 潘复生. Ni53.2Mn22.6Ga24.2单晶的磁控形状记忆效应和磁控超弹性特性[J]. 金属学报, 2009, 45(3): 351-355.
[13] 姜海昌; 戎利建 . 多孔 NiTi形状记忆合金中 Ni的释放行为[J]. 金属学报, 2008, 44(2): 198-202 .
[14] 刘新; 孟长功; 刘长厚 . O2在NiTi合金(100)表面吸附的理论研究[J]. 金属学报, 2006, 42(4): 421-425 .
[15] 文玉华; 张伟; 李宁; 谢文玲; 王杉华 . 控制第二相方向性析出对铁基合金记忆效应的影响[J]. 金属学报, 2006, 42(11): 1217-1220 .