Please wait a minute...
金属学报  2023, Vol. 59 Issue (1): 169-179    DOI: 10.11900/0412.1961.2022.00410
  研究论文 本期目录 | 过刊浏览 |
原位自生2%TiB2 颗粒对2024Al增材制造合金组织和力学性能的影响
孙腾腾1, 王洪泽1,2(), 吴一1,2(), 汪明亮1,2, 王浩伟1,2
1.上海交通大学 材料科学与工程学院 金属基复合材料国家重点实验室 上海 200240
2.上海交通大学 安徽(淮北)陶铝新材料研究院 淮北 235000
Effect ofIn Situ 2%TiB2 Particles on Microstructure and Mechanical Properties of 2024Al Additive Manufacturing Alloy
SUN Tengteng1, WANG Hongze1,2(), WU Yi1,2(), WANG Mingliang1,2, WANG Haowei1,2
1.State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
2.Institute of Alumics Materials, Shanghai Jiao Tong University (Anhui), Huaibei 235000, China
引用本文:

孙腾腾, 王洪泽, 吴一, 汪明亮, 王浩伟. 原位自生2%TiB2 颗粒对2024Al增材制造合金组织和力学性能的影响[J]. 金属学报, 2023, 59(1): 169-179.
Tengteng SUN, Hongze WANG, Yi WU, Mingliang WANG, Haowei WANG. Effect ofIn Situ 2%TiB2 Particles on Microstructure and Mechanical Properties of 2024Al Additive Manufacturing Alloy[J]. Acta Metall Sin, 2023, 59(1): 169-179.

全文: PDF(3426 KB)   HTML
摘要: 

采用激光粉末床熔化(laser powder bed fusion,L-PBF)工艺制备含2% (质量分数)原位自生TiB2颗粒的2024Al-2%TiB2合金和难打印2024Al合金,研究了TiB2颗粒对经固溶(510℃处理1 h后水冷)和T6 (固溶处理后人工时效)热处理后增材制造2024Al合金组织和室温拉伸性能的影响。由于L-PBF冷却速率较快以及TiB2颗粒的添加,2024Al-2%TiB2合金微观组织以等轴晶为主,平均晶粒尺寸约为5.8 μm。T6热处理之后,2024Al合金的抗拉强度、屈服强度和伸长率分别为(261.3 ± 4.3) MPa、(252.6 ± 2.5) MPa和(0.3 ± 0.1)%;2024Al-2%TiB2合金抗拉强度、屈服强度和伸长率分别达到(458.2 ± 6.5) MPa、(398.4 ± 2.7) MPa和(3.4 ± 0.4)%;2种合金中析出大量均匀分布、尺寸细小的长条状析出相。T6态2024Al-2%TiB2增材制造合金的抗拉强度与2024Al增材制造合金相比提高75.5%,其强度与2024Al锻造合金强度相当。合金的主要强化机制是位错强化、晶界强化、析出相强化和TiB2颗粒带来的Orowan强化以及载荷传递强化,2种合金热处理后的拉伸断裂失效主要由缺陷控制。原位自生2024Al-2%TiB2增材制造合金成形性较好,经热处理后获得较高的综合室温拉伸性能。

关键词 激光粉末床熔化2024Al合金原位自生TiB2颗粒热处理拉伸性能    
Abstract

Laser powder bed fusion (L-PBF) is an innovative additive manufacturing method with great potential for fabricating complex geometrical components with integrated functionalities. In the aerospace industry, the Al-Cu-Mg (2024Al) alloy is widely used because of its excellent mechanical properties and low density; however, its disadvantages include low printability and high crack susceptibility. This work investigates the effects of in situ TiB2 particles on the microstructure and tensile properties of the solution-treated (510oC treat 1 h and then cooling by water) and T6-treated (i.e., solution and aging treatments) L-PBF fabricated 2024Al alloy at room temperature. Equiaxed grains with an average size of approximately 5.8 μm dominate in the printed 2024Al-2%TiB2 alloy because of the high cooling rate during the L-PBF process and the heterogeneous nucleation effect of the TiB2 particles. After the T6 heat treatment, many uniformly distributed, fine, and long precipitation strips formed in both the 2024Al and 2024Al-2%TiB2 alloys. The 2024Al-2%TiB2 alloy has ultimate tensile and yield strengths of (458.2 ± 6.5) and (398.4 ± 2.7) MPa, respectively; further, it has a maximum elongation of (3.4 ± 0.4)%. These parameters indicate a substantial improvement in the strength and elongation of the 2024Al-2%TiB2 alloy compared to those of the 2024Al alloy. Furthermore, the mechanical properties of the T6-treated 2024Al-2%TiB2 alloy are comparable to those of the wrought T6-treated 2024Al-T6 alloy. The main strengthening mechanisms of the 2024Al-2%TiB2 alloy include solid solution strengthening, dislocation strengthening, grain boundary strengthening, precipitation strengthening, Orowan strengthening, and load-bearing strengthening induced by TiB2 particles. In conclusion, 2024Al-2%TiB2 alloy manufactured using the L-PBF method provides excellent printability and room-temperature tensile properties.

Key wordslaser powder bed fusion    2024Al alloy    in situ TiB2 particle    heat treatment    tensile property
收稿日期: 2022-08-25     
ZTFLH:  TG146.2  
基金资助:国家自然科学基金项目(52075327);国家自然科学基金项目(52004160);上海市青年科技英才杨帆计划项目(20YF1419200);上海市自然科学基金项目(20ZR1427500);淮北市重大科技项目(Z2020001);上海同步辐射光源BL13W1线站项目(2020-SSRF-PT-012107)
作者简介: 孙腾腾,女,1993 年生,博士生
图1  拉伸试样及微观组织观察试样取样示意图
图2  激光粉末床熔化(L-PBF)成形2024Al合金及2024Al-2%TiB2合金的截面OM像、三维CT测试结果及内部缺陷尺寸统计分布图
图3  L-PBF成形2024Al-2%TiB2合金的EBSD 结果
图4  L-PBF成形2024Al合金的DSC曲线
图5  固溶处理态2024Al合金和2024Al-2%TiB2合金OM及SEM-BSE像
图6  L-PBF成形2024Al合金和2024Al-2%TiB2合金经固溶处理和T6热处理的硬度变化和拉伸曲线
ConditionSampleUTS / MPaYS / MPaEL / %Ref.
L-PBF2024Al180 ± 3.20.3 ± 0.18[14]
2024Al-2%TiB2327 ± 6.02225.6 ± 4.964.15 ± 0.2[14]
ST2024Al240.1 ± 2.6236.8 ± 3.10.3 ± 0.1This work
2024Al-2%TiB2457.6 ± 3.6339.5 ± 1.05.1 ± 0.3This work
T62024Al261.3 ± 4.3252.6 ± 2.50.3 ± 0.1This work
2024Al~427~345~5[24,25]
2024Al-2%TiB2458.2 ± 6.5398.4 ± 2.73.4 ± 0.4This work
Annealed2024Al~220~95~12[24,25]
表1  不同热处理后L-PBF成形2024Al合金和2024Al-2%TiB2合金的拉伸性能
图7  T6热处理态2024Al合金和2024Al-2%TiB2合金的拉伸断口形貌
图8  热处理态2024Al合金和2024Al-2%TiB2合金的XRD谱
图9  T6热处理态2024Al合金和2024Al-2%TiB2合金的SEM-BSE像
图10  热处理态2024Al合金及2024Al-2%TiB2合金应变硬化速率和真应力-真应变曲线
1 Wang A, Wang H Z, Wu Y, et al. 3D printing of aluminum alloys using laser powder deposition: A review [J]. Int. J. Adv. Manuf. Technol., 2021, 116: 1
doi: 10.1007/s00170-021-07440-5
2 Shi Y S, Zhang J L, Wen S F, et al. Additive manufacturing and foundry innovation [J]. China Foundry, 2021, 18: 286
doi: 10.1007/s41230-021-1008-8
3 Molitch-Hou M. Overview of additive manufacturing process [A]. Additive Manufacturing [M]. Oxford: Elsevier, 2018: 1
4 Sun X F, Song W, Liang J J, et al. Research and development in materials and processes of superalloy fabricated by laser additive manufacturing [J]. Acta Metall. Sin., 2021, 57: 1471
doi: 10.11900/0412.1961.2021.00371
4 孙晓峰, 宋 巍, 梁静静 等. 激光增材制造高温合金材料与工艺研究进展 [J]. 金属学报, 2021, 57: 1471
doi: 10.11900/0412.1961.2021.00371
5 DebRoy T, Wei H L, Zuback J S, et al. Additive manufacturing of metallic components—Process, structure and properties [J]. Prog. Mater. Sci., 2018, 92: 112
doi: 10.1016/j.pmatsci.2017.10.001
6 Geng Y X, Tang H, Xu J H, et al. Formability and mechanical properties of high-strength Al-(Mn, Mg)-(Sc, Zr) alloy produced by selective laser melting [J]. Acta Metall. Sin., 2022, 58: 1044
6 耿遥祥, 唐 浩, 许俊华 等. 选区激光熔化高强Al-(Mn, Mg)-(Sc, Zr)合金成形性及力学性能 [J]. 金属学报, 2022, 58: 1044
doi: 10.11900/0412.1961.2021.00023
7 Wen X L, Wang Q Z, Mu Q, et al. Laser solid forming additive manufacturing TiB2 reinforced 2024Al composite: Microstructure and mechanical properties [J]. Mater. Sci. Eng., 2019, A745: 319
8 Yang H H, W J Y, Wei Q L, et al. Stable cladding of high reflectivity pure copper on the aluminum alloy substrate by an infrared-blue hybrid laser [J]. Addit. Manufact. Lett., 2022, 3: 100040
9 Lopez-Botello O, Martinez-Hernandez U, Ramírez J, et al. Two-dimensional simulation of grain structure growth within selective laser melted AA-2024 [J]. Mater. Des., 2017, 113: 369
doi: 10.1016/j.matdes.2016.10.031
10 Zhang C, Zhang H, Wang L, et al. Microcracking and mechanical properties in laser-arc hybrid welding of wrought Al-6Cu aluminum alloy [J]. Metall. Mater. Trans., 2018, 49A: 4441
11 Martin J H, Yahata B D, Hundley J M, et al. 3D printing of high-strength aluminium alloys [J]. Nature, 2017, 549: 365
doi: 10.1038/nature23894
12 Tan Q Y, Zhang J Q, Sun Q, et al. Inoculation treatment of an additively manufactured 2024 aluminium alloy with titanium nanoparticles [J]. Acta Mater., 2020, 196: 1
doi: 10.1016/j.actamat.2020.06.026
13 Li X P, Kong C, Becker T, et al. Investigation of interfacial reaction products and stress distribution in selective laser melted Al12Si/SiC composite using confocal Raman microscopy [J]. Adv. Eng. Mater., 2016, 18: 1337
doi: 10.1002/adem.201600150
14 Sun T T, Xiao Y K, Luo G D, et al. Roadmap to improve the printability of a non-castable alloy for additive manufacturing [J]. Metall. Mater. Trans., 2022, 53A: 2780
15 Sun T T, Wang H Z, Gao Z Y, et al. The role of in-situ nano-TiB2 particles in improving the printability of noncastable 2024Al alloy [J]. Mater. Res. Lett., 2022, 10: 656
doi: 10.1080/21663831.2022.2080514
16 Fiocchi J, Tuissi A, Biffi C A. Heat treatment of aluminium alloys produced by laser powder bed fusion: A review [J]. Mater. Des., 2021, 204: 109651
doi: 10.1016/j.matdes.2021.109651
17 Xiao Y K, Bian Z Y, Wu Y, et al. Simultaneously minimizing residual stress and enhancing strength of selective laser melted nano-TiB2 decorated Al alloy via post-uphill quenching and ageing [J]. Mater. Charact., 2021, 178: 111242
doi: 10.1016/j.matchar.2021.111242
18 Li W, Li S, Liu J, et al. Effect of heat treatment on AlSi10Mg alloy fabricated by selective laser melting: Microstructure evolution, mechanical properties and fracture mechanism [J]. Mater. Sci. Eng., 2016, A663: 116
19 Malikov A, Orishich A, Vitoshkin I, et al. Effect of post-heat treatment on microstructure and mechanical properties of laser welded Al-Cu-Mg alloy [J]. J. Manuf. Process., 2021, 64: 620
doi: 10.1016/j.jmapro.2021.02.008
20 Tao Y, Zhang Z, Xue P, et al. Effect of post weld artificial aging and water cooling on microstructure and mechanical properties of friction stir welded 2198-T8 Al-Li joints [J]. J. Mater. Sci. Technol., 2022, 123: 92
doi: 10.1016/j.jmst.2022.01.020
21 Sun T T, Chen J, Wu Y, et al. Achieving excellent strength of the LPBF additively manufactured Al-Cu-Mg composite via in-situ mixing TiB2 and solution treatment [J]. Mater. Sci. Eng., 2022, A850: 143531
22 Thapliyal S, Shukla S, Zhou L, et al. Design of heterogeneous structured Al alloys with wide processing window for laser-powder bed fusion additive manufacturing [J]. Addit. Manuf., 2021, 42: 102002
23 Hooper P A. Melt pool temperature and cooling rates in laser powder bed fusion [J]. Addit. Manuf., 2018, 22: 548
24 Zhang H Y, Li J M, Sun J L, et al. Theoretical analysis for condensation heat transfer of binary refrigerant mixtures with annular flow in horizontal mini-tubes [J]. Heat Mass Transfer, 2016, 52: 47
doi: 10.1007/s00231-015-1596-1
25 Olakanmi E O, Cochrane R F, Dalgarno K W. A review on selective laser sintering/melting (SLS/SLM) of aluminium alloy powders: Processing, microstructure, and properties [J]. Prog. Mater. Sci., 2015, 74: 401
doi: 10.1016/j.pmatsci.2015.03.002
26 Wang W Q, Wang S Y, Chen F, et al. Microstructure and mechanical properties of TiN/Inconel 718 composites fabricated by selective laser melting [J]. Acta Metall. Sin., 2021, 57: 1017
doi: 10.11900/0412.1961.2020.00485
26 王文权, 王苏煜, 陈 飞 等. 选区激光熔化成形TiN/Inconel 718复合材料的组织和力学性能 [J]. 金属学报, 2021, 57: 1017
doi: 10.11900/0412.1961.2020.00485
27 Li X P, Ji G, Chen Z, et al. Selective laser melting of nano-TiB2 decorated AlSi10Mg alloy with high fracture strength and ductility [J]. Acta Mater., 2017, 129: 183
doi: 10.1016/j.actamat.2017.02.062
28 Liu Y X, Wang R C, Peng C Q, et al. Microstructural evolution and mechanical performance of in-situ TiB2/AlSi10Mg composite manufactured by selective laser melting [J]. J. Alloys Compd., 2021, 853: 157287
doi: 10.1016/j.jallcom.2020.157287
29 Wang P, Gammer C, Brenne F, et al. A heat treatable TiB2/Al-3.5Cu-1.5Mg-1Si composite fabricated by selective laser melting: Microstructure, heat treatment and mechanical properties [J]. Composites, 2018, 147B: 162
30 McPeak K M, Jayanti S V, Kress S J P, et al. Plasmonic films can easily be better: Rules and recipes [J]. ACS Photonics, 2015, 2: 326
pmid: 25950012
31 Cui H C, Lu F G, Peng K, et al. Comparison of laser welding between TiB2/ZL101 composites and ZL101 [J]. Weld. Joining, 2010, (3): 48
31 崔海超, 芦凤桂, 彭 坤 等. TiB2/ZL101复合材料与ZL101合金激光焊对比研究 [J]. 焊接, 2010, (3): 48
32 Ma Y, Addad A, Ji G, et al. Atomic-scale investigation of the interface precipitation in a TiB2 nanoparticles reinforced Al-Zn-Mg-Cu matrix composite [J]. Acta Mater., 2020, 185: 287
doi: 10.1016/j.actamat.2019.11.068
33 Mohamed I F, Masuda T, Lee S, et al. Strengthening of A2024 alloy by high-pressure torsion and subsequent aging [J]. Mater. Sci. Eng., 2017, A704: 112
34 Jia Q B, Rometsch P, Kürnsteiner P, et al. Selective laser melting of a high strength Al-Mn-Sc alloy: Alloy design and strengthening mechanisms [J]. Acta Mater., 2019, 171: 108
doi: 10.1016/j.actamat.2019.04.014
35 Ma K K, Wen H M, Hu T, et al. Mechanical behavior and strengthening mechanisms in ultrafine grain precipitation-strengthened aluminum alloy [J]. Acta Mater., 2014, 62: 141
doi: 10.1016/j.actamat.2013.09.042
36 Zhang J L, Song B, Yang L, et al. Microstructure evolution and mechanical properties of TiB/Ti6Al4V gradient-material lattice structure fabricated by laser powder bed fusion [J]. Composites, 2020, 202B: 108417
37 Hadadzadeh A, Baxter C, Amirkhiz B S, et al. Strengthening mechanisms in direct metal laser sintered AlSi10Mg: Comparison between virgin and recycled powders [J]. Addit. Manuf., 2018, 23: 108
38 Considére A. Mémoire sur l'emploi du fer et de l'acier dans les constructions [J]. Ann. Ponts Chaussées, 1885, 9: 574
39 Xiao Y K, Chen H, Bian Z Y, et al. Enhancing strength and ductility of AlSi10Mg fabricated by selective laser melting by TiB2 nanoparticles [J]. J. Mater. Sci. Technol., 2022, 109: 254
doi: 10.1016/j.jmst.2021.08.030
40 Chen B, Moon S K, Yao X, et al. Strength and strain hardening of a selective laser melted AlSi10Mg alloy [J]. Scr. Mater., 2017, 141: 45
doi: 10.1016/j.scriptamat.2017.07.025
[1] 王法, 江河, 董建新. 高合金化GH4151合金复杂析出相演变行为[J]. 金属学报, 2023, 59(6): 787-796.
[2] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[3] 王迪, 贺莉丽, 王栋, 王莉, 张思倩, 董加胜, 陈立佳, 张健. Pt-Al涂层对DD413合金高温拉伸性能的影响[J]. 金属学报, 2023, 59(3): 424-434.
[4] 杨累, 赵帆, 姜磊, 谢建新. 机器学习辅助2000 MPa级弹簧钢成分和热处理工艺开发[J]. 金属学报, 2023, 59(11): 1499-1512.
[5] 李钊, 江河, 王涛, 付书红, 张勇. GH2909低膨胀高温合金热处理中的组织演变行为[J]. 金属学报, 2022, 58(9): 1179-1188.
[6] 韩林至, 牟娟, 周永康, 朱正旺, 张海峰. 热处理温度对Ti0.5Zr1.5NbTa0.5Sn0.2 高熵合金组织结构与力学性能的影响[J]. 金属学报, 2022, 58(9): 1159-1168.
[7] 张家榕, 李艳芬, 王光全, 包飞洋, 芮祥, 石全强, 严伟, 单以银, 杨柯. 热处理对一种双峰晶粒结构超低碳9Cr-ODS钢显微组织与力学性能的影响[J]. 金属学报, 2022, 58(5): 623-636.
[8] 曾小勤, 王杰, 应韬, 丁文江. 镁及其合金导热研究进展[J]. 金属学报, 2022, 58(4): 400-411.
[9] 袁波, 郭明星, 韩少杰, 张济山, 庄林忠. 添加3%ZnAl-Mg-Si-Cu合金非等温时效析出行为的影响[J]. 金属学报, 2022, 58(3): 345-354.
[10] 陈润, 王帅, 安琦, 张芮, 刘文齐, 黄陆军, 耿林. 热挤压与热处理对网状TiBw/TC18复合材料组织及性能的影响[J]. 金属学报, 2022, 58(11): 1478-1488.
[11] 王迪, 黄锦辉, 谭超林, 杨永强. 激光增材制造过程中循环热输入对组织和性能的影响[J]. 金属学报, 2022, 58(10): 1221-1235.
[12] 王文权, 王苏煜, 陈飞, 张新戈, 徐宇欣. 选区激光熔化成形TiN/Inconel 718复合材料的组织和力学性能[J]. 金属学报, 2021, 57(8): 1017-1026.
[13] 王悦, 王继杰, 张昊, 赵泓博, 倪丁瑞, 肖伯律, 马宗义. 热处理对激光选区熔化AlSi10Mg合金显微组织及力学性能的影响[J]. 金属学报, 2021, 57(5): 613-622.
[14] 马德新, 赵运兴, 徐维台, 皮立波, 李重行. 高温合金单晶铸件中共晶组织分布的表面效应[J]. 金属学报, 2021, 57(12): 1539-1548.
[15] 张少华, 谢光, 董加胜, 楼琅洪. 单晶高温合金共晶溶解行为的差热分析[J]. 金属学报, 2021, 57(12): 1559-1566.