Please wait a minute...
金属学报  2023, Vol. 59 Issue (1): 31-54    DOI: 10.11900/0412.1961.2022.00166
  综述 本期目录 | 过刊浏览 |
镁合金选区激光熔化增材制造技术研究现状与展望
彭立明1,2, 邓庆琛1,2(), 吴玉娟1,2, 付彭怀1,2, 刘子翼1,2, 武千业1,2, 陈凯1,2, 丁文江1,2
1.上海交通大学 材料科学与工程学院 轻合金精密成型国家工程研究中心 上海 200240
2.上海交通大学 材料科学与工程学院 金属基复合材料国家重点实验室 上海 200240
Additive Manufacturing of Magnesium Alloys by Selective Laser Melting Technology: A Review
PENG Liming1,2, DENG Qingchen1,2(), WU Yujuan1,2, FU Penghuai1,2, LIU Ziyi1,2, WU Qianye1,2, CHEN Kai1,2, DING Wenjiang1,2
1.National Engineering Research Center of Light Alloys Net Forming, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
2.State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
引用本文:

彭立明, 邓庆琛, 吴玉娟, 付彭怀, 刘子翼, 武千业, 陈凯, 丁文江. 镁合金选区激光熔化增材制造技术研究现状与展望[J]. 金属学报, 2023, 59(1): 31-54.
Liming PENG, Qingchen DENG, Yujuan WU, Penghuai FU, Ziyi LIU, Qianye WU, Kai CHEN, Wenjiang DING. Additive Manufacturing of Magnesium Alloys by Selective Laser Melting Technology: A Review[J]. Acta Metall Sin, 2023, 59(1): 31-54.

全文: PDF(4676 KB)   HTML
摘要: 

选区激光熔化(SLM)增材制造技术由于其加工精度高、制造周期短、材料利用率高等优点,在制备高性能复杂金属构件方面具有广阔的应用前景。镁合金是最轻的金属结构材料,具有密度低、比强度和比刚度高、阻尼减震性能好、生物降解性良好等优点。因此,采用SLM技术制备镁合金具有重要的研究价值,有望拓宽镁合金的应用范围。本文针对镁合金SLM增材制造技术,详细介绍了镁合金粉末制备、SLM工艺参数、冶金缺陷、SLM态的显微组织和力学性能、后处理、镁合金专用SLM设备方面的研究进展,并展望了未来镁合金SLM研究的发展方向。

关键词 选区激光熔化(SLM)镁合金冶金缺陷后处理显微组织力学性能    
Abstract

Selective laser melting (SLM) additive manufacturing technology holds the broad prospect for the preparation of high-performance complex metal components owing to its high processing accuracy, short manufacturing cycle, and high material usage. Magnesium (Mg) alloys are the lightest metal structural material and provide the benefits of low density, substantial specific strength and specific stiffness, good damping and shock absorption performance, and good biodegradability. Thus, it is worthwhile to employ SLM to manufacture Mg alloys, which is predicted to widen the application scope of Mg alloys. In this study, a comprehensive review on SLM of Mg alloys focusing on the preparation of Mg alloy powders, SLM process parameters, metallurgical defects, microstructure and mechanical properties of the as-built state, post-processing, and special equipment developed for SLM of Mg alloys is given. Finally, the future development trends of the SLM of Mg alloys are explored.

Key wordsselective laser melting (SLM)    Mg alloy    metallurgical defect    post-processing    microstructure    mechanical property
收稿日期: 2022-04-09     
ZTFLH:  TG146.2  
基金资助:国家重点研发计划项目(2021YFB3701001);国家自然科学基金项目(51971130);国家自然科学基金项目(U21A2047);国家自然科学基金项目(51821001);国家自然科学基金项目(U2037601)
作者简介: 彭立明,男,1972年生,特聘教授,博士
图1  选区激光熔化(SLM)制造GWZ1031K合金产生的蒸发烟尘和宏观裂纹[20]
图2  SLM制造镁合金的发展历程
TypeChemical composition (mass fraction, %)Particle size distributionSource
Pure MgMg: 99 min.315-630 μmEckart
Mg: 99.5 min.100-315 μm
Mg: 97 min.< 71 μm
Pure Mg99.8 MgA: +200 mesh: 0.5% max.,

MEP

-325 mesh: 60% max.;
B: +200 mesh: 0% max.,
-325 mesh: 95% min.
MAP + 21Mg-2.7Nd-1.3Gd-0.3Zn-0.6Zr

A: < 150 μm, D50 = 90 μm;

B: < 25 μm

MAP + 43Mg-4Y-3Nd-0.5Zr
MAP + 91Mg-(8.5-9.5)Al-(0.45-0.9)Zn-(0.17-0.3)Mn
MAP 21Mg-2.7Nd-1.3Gd-0.3Zn-0.6Zr

A: +80 mesh: 5% max.,

-325 mesh: 20% max.;

B: +325 mesh: 5% max.,

-325 mesh: balance

MAP 43Mg-4Y-3Nd-0.5Zr
MAP 91Mg-(8.5-9.5)Al-(0.45-0.9)Zn-(0.17-0.3)Mn
AZ31BMg-3Al-1Zn-0.3Mn

80-325 mesh size:

+325 mesh: 5% max

AZ91EMg-(8.5-9.5)Al-(0.45-0.9)Zn-(0.17-0.3)Mn
WE43BMg-4Y-3Nd-0.5Zr
Pure MgMg: 99.9 min.

A: 15-53 μm;

B: 20-63 μm;

C: 100-200 mesh:

D10, D50, D90 = 57, 81, 179 μm;

D: 200-300 mesh:

D10, D50, D90 = 46, 61, 85 μm;

E: 300-500 mesh:

D10, D50, D90 = 31, 42, 59 μm;

F: -500 mesh:

D10, D50, D90 = 21, 34, 52 μm;

TWMP

AZ91DMg-8.90Al-0.43Zn-0.19Mn
AZ31Mg-2.8Al-0.7Zn-0.4Mn
WE43Mg-4.01Y-3.04RE-0.51Zr
ZK60Mg-5.6Zn-0.5Zr
ZK61Mg-5.20Zn-0.33Zr
Mg-Al series

Mg∶Al = 60∶40, 55∶45, 50∶50,

40∶60, 20∶80, 10∶90

Mg-Zn series

Mg∶Zn = 95∶5, 90∶10, 70∶30,

50∶50, 30∶70, 20∶80, 10∶90

表1  典型的商业化的镁粉
图3  200~300目GWZ1031K预合金化粉末的SEM表征[20]
图4  SLM成形GZ112K合金的扫描速率-扫描间距(V-S)加工图,及3个加工区域对应的缺陷特征:孔洞缺陷、致密区、未熔合缺陷[79]
Raw materialChemical compositionProcess parameterηRelativeRef.
(mass fraction, %)PVStJ·mm-3density
Wmm·s-1μmμm%
Pure Mg99.81Mg901001003030096.13[26]
Pure Mg99.81Mg705003030155.697.5[27]
AZ91DMg-8.95Al-0.44Zn-0.19Mn2003339040151.599.52[28]
AZ91DMg-9.08Al-0.65Zn-0.23Mn502003030277.898.1[75]
AZ91D + 5%SiCMg-9.08Al-0.65Zn-0.23Mn +97.9
5% (volume fraction) SiC
AZ61Mg-6.25Al-1.24Zn-0.27Mn1504006040156.399.4[32]
AZ61Mg-6Al-1Zn803.3335050960098[30]
AZ31Mg-2.97Al-0.89Zn751257050171.499.63[34]
A9Mg-9Al705003030155.695.7[31]
A9Mg-9Al15208050187.582[18]
ZK60Mg-5.2Zn-0.5Zr2003008020416.794.05[42]
ZK60Mg-5.6Zn-0.5Zr508.33310010060097.4[43]
ZK60Mg-5.2Zn-0.3Zr50600---98[52]
ZK60Mg-5.6Zn-0.5Zr1206007010285.794.9[51]
Z1Mg-1Zn1807007020183.799.35[46]
WE43-20011001304035.099.7[66]
WE43Mg-3.5Y-1.6Nd-0.7Gd-0.4Zr2007004030238.1> 99.8[63]
WE43Mg-4Y-3.3Nd-0.5Zr1958002003040.699.6[64]
WE43Mg-3.96Y-2.30Nd-0.56Zr175700905055.699.48[69]
G10KMg-10.17Gd-0.18Zr8020010030133.399.22[80]
GZ112KMg-11.82Gd-2.03Zn-0.43Zr803001003088.999.95[79]
GZ151KMg-13.57Gd-0.85Zn-0.30Zr2007007030136.197.9[81]
表2  SLM制备镁合金的工艺参数[18,26~28,30~32,34,42,43,46,51,52,63,64,66,69,75,79~81]
图5  半连续铸造和SLM制备的GZ112K合金的显微组织[79]
AlloyChemical compositions of powderStateYSUTSELRef.
(mass fraction, %)MPaMPa%
A9Mg-9AlAs-built-2741.09[31]
AZ91DMg-8.95Al-0.44Zn-0.19MnAs-built2542961.83[28]
AZ91DMg-9.08Al-0.65Zn-0.23MnAs-built2652982.0[75]
AZ91D + 5%SiCnpMg-9.08Al-0.65Zn-0.23Mn +As-built3083451.1[75]
5% (volume fraction) SiCnp
AZ91DMg-9.08Al-0.65Zn-0.23MnAs-built2083398.3[39]
AZ61Mg-6.25Al-1.24Zn-0.27MnAs-built2332873.1[32]
HIPed1262748.2[35]
AZ31BMg-2.97Al-0.89ZnAs-built1832127.9[34]
AZ31B/CNTsAZ31B + 1.5%CNTsAs-built245286-[74]
AZX912Mg-8.55Al-0.64Zn-1.81Ca-0.18MnAs-built2533323.2[33]
Z1Mg-1ZnAs-built-14811.0[46]
ZK60-As-built13724615.5[55]
T410722416.7
T619128714.1
WE43Mg-3.48Y-1.62Nd-0.71Gd-0.40ZrAs-built29630811.9[63]
WE43-As-built2152512.6[66]
T62192514.3
G10KMg-10.17Gd-0.18ZrAs-built20327110.3[84]
T52853602.9
GZ112KMg-11.00Gd-1.77Zn-0.43ZrAs-built3323518.6[82]
T428131114.4
T63433714.0
GZ151KMg-13.57Gd-0.85Zn-0.30ZrAs-built3453683.0[81]
T54104283.4
GWZ1031KMg-11.02Gd-2.41Y-0.96Zn-0.40ZrAs-built3103474.1[20]
T53653810.8
T425532810.3
T63164002.2
表3  最优工艺参数下SLM态和后处理态镁合金的室温拉伸性能[20,28,31~35,39,46,55,63,66,74,75,79~82,84]
图6  典型镁合金在铸态、SLM态和挤压态下的室温拉伸性能对比[20,32,34,55,63,75,81,82,84]
图7  匙孔失稳形成气泡的具体过程[89]
图8  SLM制备的Mg-Zn合金的内部缺陷特征及测量的裂纹含量与致密度[46]
图9  SLM态GZ151K方块中纵截面的裂纹分布[83]
图10  SLM态GZ112K合金在不同温度下固溶1 h的显微组织及热处理前后的室温拉伸性能[28,32~34,63,66,75,82,98~103]
图11  SLM态和搅拌摩擦加工(FSP)态G10K合金的OM和EBSD像[80]
图12  3种循环气体滤网的结构及其气体流动速率分布,及最优气流下Zn蒸气的质量分布[97]
1 Wu G H, Wang C L, Sun M, et al. Recent developments and applications on high-performance cast magnesium rare-earth alloys [J]. J. Magnes. Alloy., 2021, 9: 1
doi: 10.1016/j.jma.2020.06.021
2 Song J F, Chen J, Xiong X M, et al. Research advances of magnesium and magnesium alloys worldwide in 2021 [J]. J. Magnes. Alloy., 2022, 10: 863
doi: 10.1016/j.jma.2022.04.001
3 Fu P H, Peng L M, Jiang H, et al. Tensile properties of high strength cast Mg alloys at room temperature: A review [J]. China Foundry, 2014, 11: 277
4 Lu B H, Li D C, Tian X Y. Development trends in additive manufacturing and 3D printing [J]. Engineering, 2015, 1: 85
doi: 10.15302/J-ENG-2015012
5 Zeng Z R, Salehi M, Kopp A, et al. Recent progress and perspectives in additive manufacturing of magnesium alloys [J]. J. Magnes. Alloy., 2022, 10: 1511
doi: 10.1016/j.jma.2022.03.001
6 Tandon R, Palmer T, Gieseke M, et al. Additive manufacturing of magnesium alloy powders: Investigations into process development using Elektron®MAP + 43 via laser powder bed fusion and directed energy deposition [A]. World PM 2016 Congress and Exhibition [C]. European Powder Metallurgy Association (EPMA), 2016: 1
7 Liao H G, Fu P H, Peng L M, et al. Microstructure and mechanical properties of laser melting deposited GW103K Mg-RE alloy [J]. Mater. Sci. Eng., 2017, A687: 281
8 Zheng D D, Li Z, Jiang Y L, et al. Effect of multiple thermal cycles on the microstructure evolution of GA151K alloy fabricated by laser-directed energy deposition [J]. Addit. Manuf., 2022, 57: 102957
9 Madhuri N, Jayakumar V, Sathishkumar M. Recent developments and challenges accompanying with wire arc additive manufacturing of Mg alloys: A review [J]. Mater. Today Proc., 2021, 46: 8573
10 Guo J, Zhou Y, Liu C M, et al. Wire arc additive manufacturing of AZ31 magnesium alloy: Grain refinement by adjusting pulse frequency [J]. Materials, 2016, 9: 823480
11 Holguin D A M, Han S, Kim N P. Magnesium alloy 3D printing by wire and arc additive manufacturing (WAAM) [J]. MRS Adv., 2018, 3: 2959
doi: 10.1557/adv.2018.553
12 Rong W, Zhang Y, Wu Y J, et al. Fabrication of high-strength Mg-Gd-Zn-Zr alloys via differential-thermal extrusion [J]. Mater. Charact., 2017, 131: 380
doi: 10.1016/j.matchar.2017.07.031
13 Zhang W N, Wang L Z, Feng Z X, et al. Research progress on selective laser melting (SLM) of magnesium alloys: A review [J]. Optik, 2020, 207: 163842
doi: 10.1016/j.ijleo.2019.163842
14 Thijs L, Kempen K, Kruth J P, et al. Fine-structured aluminium products with controllable texture by selective laser melting of pre-alloyed AlSi10Mg powder [J]. Acta Mater., 2013, 61: 1809
doi: 10.1016/j.actamat.2012.11.052
15 Thijs L, Verhaeghe F, Craeghs T, et al. A study of the microstructural evolution during selective laser melting of Ti-6Al-4V [J]. Acta Mater., 2010, 58: 3303
doi: 10.1016/j.actamat.2010.02.004
16 Gao Y, Zhang D Y, Cao M, et al. Effect of δ phase on high temperature mechanical performances of Inconel 718 fabricated with SLM process [J]. Mater. Sci. Eng., 2019, A767: 138327
17 Wang Y M, Voisin T, McKeown J T, et al. Additively manufactured hierarchical stainless steels with high strength and ductility [J]. Nat. Mater., 2018, 17: 63
doi: 10.1038/nmat5021 pmid: 29115290
18 Zhang B C, Liao H L, Coddet C. Effects of processing parameters on properties of selective laser melting Mg-9%Al powder mixture [J]. Mater. Des., 2012, 34: 753
doi: 10.1016/j.matdes.2011.06.061
19 Liu J, Wen P. Metal vaporization and its influence during laser powder bed fusion process [J]. Mater. Des., 2022, 215: 110505
doi: 10.1016/j.matdes.2022.110505
20 Deng Q C, Wu Y J, Wu Q Y, et al. Microstructure evolution and mechanical properties of a high-strength Mg-10Gd-3Y-1Zn-0.4Zr alloy fabricated by laser powder bed fusion [J]. Addit. Manuf., 2022, 49: 102517
21 Cao X, Jahazi M, Immarigeon J P, et al. A review of laser welding techniques for magnesium alloys [J]. J. Mater. Process. Technol., 2006, 171: 188
doi: 10.1016/j.jmatprotec.2005.06.068
22 Brandau B, Da Silva A, Wilsnack C, et al. Absorbance study of powder conditions for laser additive manufacturing [J]. Mater. Des., 2022, 216: 110591
doi: 10.1016/j.matdes.2022.110591
23 Ng C C, Savalani M M, Man H C, et al. Layer manufacturing of magnesium and its alloy structures for future applications [J]. Virtual Phys. Prototyp., 2010, 5: 13
doi: 10.1080/17452751003718629
24 Ng C C, Savalani M M, Lau M L, et al. Microstructure and mechanical properties of selective laser melted magnesium [J]. Appl. Surf. Sci., 2011, 257: 7447
doi: 10.1016/j.apsusc.2011.03.004
25 Gieseke M, Noelke C, Kaierle S, et al. Selective laser melting of magnesium and magnesium alloys[A]. Magnesium Technology2013[M]. Cham: Springer, 2013: 65
26 Hu D, Wang Y, Zhang D F, et al. Experimental investigation on selective laser melting of bulk net-shape pure magnesium [J]. Mater. Manuf. Process., 2015, 30: 1298
doi: 10.1080/10426914.2015.1025963
27 Niu X M, Shen H Y, Fu J Z, et al. Corrosion behaviour of laser powder bed fused bulk pure magnesium in Hank's solution [J]. Corros. Sci., 2019, 157: 284
doi: 10.1016/j.corsci.2019.05.026
28 Wei K W, Gao M, Wang Z M, et al. Effect of energy input on formability, microstructure and mechanical properties of selective laser melted AZ91D magnesium alloy [J]. Mater. Sci. Eng., 2014, A611: 212
29 Pawlak A, Rosienkiewicz M, Chlebus E. Design of experiments approach in AZ31 powder selective laser melting process optimization [J]. Arch. Civ. Mech. Eng., 2017, 17: 9
doi: 10.1016/j.acme.2016.07.007
30 He C X, Bin S, Wu P, et al. Microstructure evolution and biodegradation behavior of laser rapid solidified Mg-Al-Zn alloy [J]. Metals, 2017, 7: 105
doi: 10.3390/met7030105
31 Niu X M, Shen H Y, Fu J Z. Microstructure and mechanical properties of selective laser melted Mg-9 wt%Al powder mixture [J]. Mater. Lett., 2018, 221: 4
doi: 10.1016/j.matlet.2018.03.068
32 Liu S, Yang W S, Shi X, et al. Influence of laser process parameters on the densification, microstructure, and mechanical properties of a selective laser melted AZ61 magnesium alloy [J]. J. Alloys Compd., 2019, 808: 151160
doi: 10.1016/j.jallcom.2019.06.261
33 Proaño B, Miyahara H, Matsumoto T, et al. Weakest region analysis of non-combustible Mg products fabricated by selective laser melting [J]. Theor. Appl. Fract. Mech., 2019, 103: 102291
doi: 10.1016/j.tafmec.2019.102291
34 Pawlak A, Szymczyk P E, Kurzynowski T, et al. Selective laser melting of magnesium AZ31B alloy powder [J]. Rapid Prototyp. J., 2019, 26: 249
doi: 10.1108/RPJ-05-2019-0137
35 Liu S, Guo H J. Influence of hot isostatic pressing (HIP) on mechanical properties of magnesium alloy produced by selective laser melting (SLM) [J]. Mater. Lett., 2020, 265: 127463
doi: 10.1016/j.matlet.2020.127463
36 Liu L, Ma H T, Gao C D, et al. Island-to-acicular alteration of second phase enhances the degradation resistance of biomedical AZ61 alloy [J]. J. Alloys Compd., 2020, 835: 155397
doi: 10.1016/j.jallcom.2020.155397
37 Liu S, Guo H J. Balling behavior of selective laser melting (SLM) magnesium alloy [J]. Materials (Basel), 2020, 13: 3632
doi: 10.3390/ma13163632
38 Proaño B, Miyahara H, Matsumoto T, et al. Plastic strain distribution throughout the microstructure duality during the fracture process of non-combustible Mg products fabricated by selective laser melting [J]. Theor. Appl. Fract. Mech., 2020, 110: 102805
doi: 10.1016/j.tafmec.2020.102805
39 Xu C J, Hua X Y, Ma D, et al. Study on microstructure and properties of selective laser melted (SLM) magnesium alloy AZ91D [J]. Foundry Technol., 2021, 42: 749
39 徐春杰, 华心雨, 马 东 等. 选区激光熔化AZ91D镁合金的组织与性能 [J]. 铸造技术, 2021, 42: 749
40 Wang J Y, Chang Z P, Yue Y F, et al. Effect of particle size distribution of AZ91D magnesium alloy powder on selective laser melting process [J]. Hebei J. Ind. Sci. Technol., 2022, 39: 79
40 王金业, 常志鹏, 岳彦芳 等. AZ91D镁合金粉末粒度分布对其选区激光熔化成形的影响 [J]. 河北工业科技, 2022, 39: 79
41 Zeng Z R, Choudhary S, Esmaily M, et al. An additively manufactured magnesium-aluminium alloy withstands seawater corrosion [J]. npj Mater. Degrad., 2022, 6: 32
doi: 10.1038/s41529-022-00241-5
42 Wei K W, Wang Z M, Zeng X Y. Influence of element vaporization on formability, composition, microstructure, and mechanical performance of the selective laser melted Mg-Zn-Zr components [J]. Mater. Lett., 2015, 156: 187
doi: 10.1016/j.matlet.2015.05.074
43 Shuai C J, Yang Y W, Wu P, et al. Laser rapid solidification improves corrosion behavior of Mg-Zn-Zr alloy [J]. J. Alloys Compd., 2017, 691: 961
doi: 10.1016/j.jallcom.2016.09.019
44 Zhang M, Chen C J, Liu C, et al. Study on porous Mg-Zn-Zr ZK61 alloys produced by laser additive manufacturing [J]. Metals, 2018, 8: 635
doi: 10.3390/met8080635
45 Shuai C J, Liu L, Zhao M C, et al. Microstructure, biodegradation, antibacterial and mechanical properties of ZK60-Cu alloys prepared by selective laser melting technique [J]. J. Mater. Sci. Technol., 2018, 34: 1944
doi: 10.1016/j.jmst.2018.02.006
46 Wei K W, Zeng X Y, Wang Z M, et al. Selective laser melting of Mg-Zn binary alloys: Effects of Zn content on densification behavior, microstructure, and mechanical property [J]. Mater. Sci. Eng., 2019, A756: 226
47 Yin Y, Huang Q L, Liang L X, et al. In vitro degradation behavior and cytocompatibility of ZK30/bioactive glass composites fabricated by selective laser melting for biomedical applications [J]. J. Alloys Compd., 2019, 785: 38
doi: 10.1016/j.jallcom.2019.01.165
48 Shuai C J, Liu L, Gao C D, et al. Uniform degradation mode and enhanced degradation resistance of Mg alloy via a long period stacking ordered phase in the grain interior [J]. Mater. Res. Express, 2019, 6: 065406
49 Tao J X, Zhao M C, Zhao Y C, et al. Influence of graphene oxide (GO) on microstructure and biodegradation of ZK30-xGO composites prepared by selective laser melting [J]. J. Magnes. Alloy., 2020, 8: 952
doi: 10.1016/j.jma.2019.10.004
50 Yang Y W, Lu C F, Peng S P, et al. Laser additive manufacturing of Mg-based composite with improved degradation behaviour [J]. Virtual Phys. Prototyp., 2020, 15: 278
doi: 10.1080/17452759.2020.1748381
51 Liu J G, Yin B Z, Sun Z R, et al. Hot cracking in ZK60 magnesium alloy produced by laser powder bed fusion process [J]. Mater. Lett., 2021, 301: 130283
doi: 10.1016/j.matlet.2021.130283
52 Wu C L, Zai W, Man H C. Additive manufacturing of ZK60 magnesium alloy by selective laser melting: Parameter optimization, microstructure and biodegradability [J]. Mater. Today Commun., 2021, 26: 101922
53 Xie B, Zhao M C, Tao J X, et al. Comparison of the biodegradation of ZK30 subjected to solid solution treating and selective laser melting [J]. J. Mater. Res. Technol., 2021, 10: 722
doi: 10.1016/j.jmrt.2020.12.041
54 Benn F, D'Elia F, Van Gaalen K, et al. Printability, mechanical and degradation properties of Mg-(x)Zn elemental powder mixes processed by laser powder bed fusion [J]. Addit. Manuf. Lett., 2022, 2: 100025
55 Liang J W, Lei Z L, Chen Y B, et al. Microstructure evolution of laser powder bed fusion ZK60 Mg alloy after different heat treatment [J]. J. Alloys Compd., 2022, 898: 163046
doi: 10.1016/j.jallcom.2021.163046
56 Liang J W, Lei Z L, Chen Y B, et al. Elimination of extraordinarily high cracking susceptibility of ZK60 Mg alloy fabricated by laser powder bed fusion [J]. Mater. Lett., 2022, 312: 131731
doi: 10.1016/j.matlet.2022.131731
57 Liang J W, Lei Z L, Chen Y B, et al. Formability, microstructure, and thermal crack characteristics of selective laser melting of ZK60 magnesium alloy [J]. Mater. Sci. Eng., 2022, A839: 142858
58 Zhou Y Z, Wu P, Yang Y W, et al. The microstructure, mechanical properties and degradation behavior of laser-melted Mg-Sn alloys [J]. J. Alloys Compd., 2016, 687: 109
doi: 10.1016/j.jallcom.2016.06.068
59 Yang Y W, Wu P, Wang Q Y, et al. The enhancement of Mg corrosion resistance by alloying Mn and laser-melting [J]. Materials (Basel), 2016, 9: 216
doi: 10.3390/ma9040216
60 Liu C, Zhang M, Chen C J. Effect of laser processing parameters on porosity, microstructure and mechanical properties of porous Mg-Ca alloys produced by laser additive manufacturing [J]. Mater. Sci. Eng., 2017, A703: 359
61 Jauer L, Meiners W, Vervoort S, et al. Selective laser melting of magnesium alloys [J]. European Congress and Exhibition on Powder Metallurgy. European PM Conference Proceedings, 2016: 1
62 Li Y, Zhou J, Pavanram P, et al. Additively manufactured biodegradable porous magnesium [J]. Acta Biomater., 2018, 67: 378
doi: S1742-7061(17)30764-X pmid: 29242158
63 Zumdick N A, Jauer L, Kersting L C, et al. Additive manufactured WE43 magnesium: A comparative study of the microstructure and mechanical properties with those of powder extruded and as-cast WE43 [J]. Mater. Charact., 2019, 147: 384
doi: 10.1016/j.matchar.2018.11.011
64 Gangireddy S, Gwalani B, Liu K M, et al. Microstructure and mechanical behavior of an additive manufactured (AM) WE43-Mg alloy [J]. Addit. Manuf., 2019, 26: 53
doi: 10.1016/j.addma.2018.12.015
65 Bär F, Berger L, Jauer L, et al. Laser additive manufacturing of biodegradable magnesium alloy WE43: A detailed microstructure analysis [J]. Acta Biomater., 2019, 98: 36
doi: S1742-7061(19)30383-6 pmid: 31132536
66 Hyer H, Zhou L, Benson G, et al. Additive manufacturing of dense WE43 Mg alloy by laser powder bed fusion [J]. Addit. Manuf., 2020, 33: 101123
67 Esmaily M, Zeng Z, Mortazavi A N, et al. A detailed microstructural and corrosion analysis of magnesium alloy WE43 manufactured by selective laser melting [J]. Addit. Manuf., 2020, 35: 101321
68 Li M Z, Benn F, Derra T, et al. Microstructure, mechanical properties, corrosion resistance and cytocompatibility of WE43 Mg alloy scaffolds fabricated by laser powder bed fusion for biomedical applications [J]. Mater. Sci. Eng., 2021, C119: 111623
69 Suchý J, Klakurková L, Man O, et al. Corrosion behaviour of WE43 magnesium alloy printed using selective laser melting in simulation body fluid solution [J]. J. Manuf. Process., 2021, 69: 556
doi: 10.1016/j.jmapro.2021.08.006
70 Liu J G, Liu B C, Min S Y, et al. Biodegradable magnesium alloy WE43 porous scaffolds fabricated by laser powder bed fusion for orthopedic applications: Process optimization, in vitro and in vivo investigation [J]. Bioact. Mater., 2022, 16: 301
71 Attarzadeh F, Asadi E. Analysis of element loss, densification, and defects in laser-based powder-bed fusion of magnesium alloy WE43 [J]. J. Magnes. Alloy., 2022, doi: 10.1016/j.jma.2022.02.011
72 Wang W L, Wang D, He L, et al. Thermal behavior and densification during selective laser melting of Mg-Y-Sm-Zn-Zr alloy: Simulation and experiments [J]. Mater. Res. Express, 2020, 7: 116519
doi: 10.1088/2053-1591/abc99b
73 Wang W L, Yang X, Wang K K. Research on formability, microstructure and mechanical properties of selective laser melted Mg-Y-Sm-Zn-Zr magnesium alloy [J]. Mater. Charact., 2022, 189: 111980
doi: 10.1016/j.matchar.2022.111980
74 Wu J J, Wang L Z. Selective laser melting manufactured CNTs/AZ31B composites: Heat transfer and vaporized porosity evolution [J]. J. Mater. Res., 2018, 33: 2752
doi: 10.1557/jmr.2018.224
75 Niu X M, Shen H Y, Fu J Z, et al. Effective control of microstructure evolution in AZ91D magnesium alloy by SiC nanoparticles in laser powder-bed fusion [J]. Mater. Des., 2021, 206: 109787
doi: 10.1016/j.matdes.2021.109787
76 Wang X C, Chen C J, Zhang M. Effect of heat treatment on microstructure and micro-wear resistance of selective laser melted Mg-Al-Zn alloy with La2O3 addition [J]. J. Mater. Eng. Perform., 2021, 30: 2316
doi: 10.1007/s11665-021-05516-7
77 Wits W W, Smit M D, Al-Hamdani K, et al. Laser powder bed fusion of a magnesium-SiC metal matrix composite [J]. Proced. CIRP, 2019, 81: 506
78 Wang C M, Shuai Y, Yang Y W, et al. Amorphous magnesium alloy with high corrosion resistance fabricated by laser powder bed fusion [J]. J. Alloys Compd., 2022, 897: 163247
doi: 10.1016/j.jallcom.2021.163247
79 Deng Q C, Wu Y J, Luo Y H, et al. Fabrication of high-strength Mg-Gd-Zn-Zr alloy via selective laser melting [J]. Mater. Charact., 2020, 165: 110377
doi: 10.1016/j.matchar.2020.110377
80 Deng Q C, Wu Y J, Su N, et al. Influence of friction stir processing and aging heat treatment on microstructure and mechanical properties of selective laser melted Mg-Gd-Zr alloy [J]. Addit. Manuf., 2021, 44: 102036
81 Fu P H, Wang N Q, Liao H G, et al. Microstructure and mechanical properties of high strength Mg-15Gd-1Zn-0. 4Zr alloy additive-manufactured by selective laser melting process [J]. Trans. Nonferrous Met. Soc. China, 2021, 31: 1969
doi: 10.1016/S1003-6326(21)65630-3
82 Deng Q C, Wu Y J, Zhu W X, et al. Effect of heat treatment on microstructure evolution and mechanical properties of selective laser melted Mg-11Gd-2Zn-0.4Zr alloy [J]. Mater. Sci. Eng., 2022, A829: 142139
83 Deng Q C, Wang X C, Lan Q, et al. Limitations of linear energy density for laser powder bed fusion of Mg-15Gd-1Zn-0.4Zr alloy [J]. Mater. Charact., 2022, 190: 112071
doi: 10.1016/j.matchar.2022.112071
84 Deng Q C, Zhang Y, Liu Z Y, et al. Laser powder bed fusion of an age-hardenable Mg-10Gd-0.2Zr alloy with excellent strength-ductility synergy [J]. J. Alloys Compd., 2022, 910: 164863
doi: 10.1016/j.jallcom.2022.164863
85 Wang Y C, Fu P H, Wang N Q, et al. Challenges and solutions for the additive manufacturing of biodegradable magnesium implants [J]. Engineering, 2020, 6: 1267
doi: 10.1016/j.eng.2020.02.015
86 Xie K, Wang N Q, Guo Y, et al. Additively manufactured biodegradable porous magnesium implants for elimination of implant-related infections: An in vitro and in vivo study [J]. Bioact. Mater., 2022, 8: 140
87 Zheng Y F, Xia D D, Shen Y N, et al. Additively manufactured biodegrabable metal implants [J]. Acta Metall. Sin., 2021, 57: 1499
doi: 10.11900/0412.1961.2021.00294
87 郑玉峰, 夏丹丹, 谌雨农 等. 增材制造可降解金属医用植入物 [J]. 金属学报, 2021, 57: 1499
doi: 10.11900/0412.1961.2021.00294
88 Cunningham R, Zhao C, Parab N, et al. Keyhole threshold and morphology in laser melting revealed by ultrahigh-speed X-ray imaging [J]. Science, 2019, 363: 849
doi: 10.1126/science.aav4687 pmid: 30792298
89 Zhao C, Parab N D, Li X X, et al. Critical instability at moving keyhole tip generates porosity in laser melting [J]. Science, 2020, 370: 1080
doi: 10.1126/science.abd1587 pmid: 33243887
90 Wang L, Zhang Y M, Chia H Y, et al. Mechanism of keyhole pore formation in metal additive manufacturing [J]. npj Comput. Mater., 2022, 8: 22
doi: 10.1038/s41524-022-00699-6
91 Kou S. Solidification and liquation cracking issues in welding [J]. JOM, 2003, 55(6): 37
92 Mercelis P, Kruth J P. Residual stresses in selective laser sintering and selective laser melting [J]. Rapid Prototyp. J., 2006, 12: 254
doi: 10.1108/13552540610707013
93 Roehling J D, Smith W L, Roehling T T, et al. Reducing residual stress by selective large-area diode surface heating during laser powder bed fusion additive manufacturing [J]. Addit. Manuf., 2019, 28: 228
doi: 10.1016/j.addma.2019.05.009
94 Chen C P, Xiao Z X, Wang Y L, et al. Prediction study on in-situ reduction of thermal stress using combined laser beams in laser powder bed fusion [J]. Addit. Manuf., 2021, 47: 102221
95 Kalentics N, Sohrabi N, Tabasi H G, et al. Healing cracks in selective laser melting by 3D laser shock peening [J]. Addit. Manuf., 2019, 30: 100881
96 Salehi M, Maleksaeedi S, Farnoush H, et al. An investigation into interaction between magnesium powder and Ar gas: Implications for selective laser melting of magnesium [J]. Powder Technol., 2018, 333: 252
doi: 10.1016/j.powtec.2018.04.026
97 Wen P, Qin Y, Chen Y Z, et al. Laser additive manufacturing of Zn porous scaffolds: Shielding gas flow, surface quality and densification [J]. J. Mater. Sci. Technol., 2019, 35: 368
doi: 10.1016/j.jmst.2018.09.065
98 Rong W, Wu Y J, Zhang Y, et al. Characterization and strengthening effects of γ′ precipitates in a high-strength casting Mg-15Gd-1Zn-0.4Zr (wt.%) alloy [J]. Mater. Charact., 2017, 126: 1
doi: 10.1016/j.matchar.2017.02.010
99 Ozaki T, Kuroki Y, Yamada K, et al. Mechanical properties of newly developed age hardenable Mg-3.2 mol%Gd-0.5 mol%Zn casting alloy [J]. Mater. Trans., 2008, 49: 2185
doi: 10.2320/matertrans.L-MRA2008830
100 Li J C, He Z L, Fu P H, et al. Heat treatment and mechanical properties of a high-strength cast Mg-Gd-Zn alloy [J]. Mater. Sci. Eng., 2016, A651: 745
101 Zhang J H, Leng Z, Liu S J, et al. Microstructure and mechanical properties of Mg-Gd-Dy-Zn alloy with long period stacking ordered structure or stacking faults [J]. J. Alloys Compd., 2011, 509: 7717
doi: 10.1016/j.jallcom.2011.04.089
102 Zhang Y, Wu Y J, Peng L M, et al. Microstructure evolution and mechanical properties of an ultra-high strength casting Mg-15.6Gd-1.8Ag-0.4Zr alloy [J]. J. Alloys Compd., 2014, 615: 703
doi: 10.1016/j.jallcom.2014.07.028
103 Wang Q D, Chen J, Zhao Z, et al. Microstructure and super high strength of cast Mg-8.5Gd-2.3Y-1.8Ag-0.4Zr alloy [J]. Mater. Sci. Eng., 2010, A528: 323
104 Macías J G S, Elangeswaran C, Zhao L, et al. Ductilisation and fatigue life enhancement of selective laser melted AlSi10Mg by friction stir processing [J]. Scr. Mater., 2019, 170: 124
doi: 10.1016/j.scriptamat.2019.05.044
[1] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[2] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[3] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[4] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[5] 卢楠楠, 郭以沫, 杨树林, 梁静静, 周亦胄, 孙晓峰, 李金国. 激光增材修复单晶高温合金的热裂纹形成机制[J]. 金属学报, 2023, 59(9): 1243-1252.
[6] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[7] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[8] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[9] 孙蓉蓉, 姚美意, 王皓瑜, 张文怀, 胡丽娟, 仇云龙, 林晓冬, 谢耀平, 杨健, 董建新, 成国光. Fe22Cr5Al3Mo-xY合金在模拟LOCA下的高温蒸汽氧化行为[J]. 金属学报, 2023, 59(7): 915-925.
[10] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[11] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[12] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[13] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[14] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[15] 邵晓宏, 彭珍珍, 靳千千, 马秀良. 镁合金LPSO/SFs结构间{101¯2}孪晶交汇机制的原子尺度研究[J]. 金属学报, 2023, 59(4): 556-566.