Please wait a minute...
金属学报  2023, Vol. 59 Issue (1): 125-135    DOI: 10.11900/0412.1961.2022.00011
  研究论文 本期目录 | 过刊浏览 |
激光热力交互增材制造Ti6Al4V合金的组织及力学性能
卢海飞, 吕继铭, 罗开玉, 鲁金忠()
江苏大学 机械工程学院 镇江 212013
Microstructure and Mechanical Properties of Ti6Al4V Alloy by Laser Integrated Additive Manufacturing with Alternately Thermal/Mechanical Effects
LU Haifei, LV Jiming, LUO Kaiyu, LU Jinzhong()
School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, China
引用本文:

卢海飞, 吕继铭, 罗开玉, 鲁金忠. 激光热力交互增材制造Ti6Al4V合金的组织及力学性能[J]. 金属学报, 2023, 59(1): 125-135.
Haifei LU, Jiming LV, Kaiyu LUO, Jinzhong LU. Microstructure and Mechanical Properties of Ti6Al4V Alloy by Laser Integrated Additive Manufacturing with Alternately Thermal/Mechanical Effects[J]. Acta Metall Sin, 2023, 59(1): 125-135.

全文: PDF(4214 KB)   HTML
摘要: 

面向航空发动机关键构件长寿命高可靠性需求,针对增材制造中的“控形”和“控性”难题,结合塑性变形“逐层”消除内应力和冶金缺陷的思想,提出了激光热力交互增材制造新方法。基于该方法,以Ti6Al4V合金为研究对象,系统表征了成形件的残余应力和冶金缺陷分布、微观组织演变。并通过拉伸实验,研究了激光冲击处理(表面激光冲击强化和层间无吸收层激光冲击强化)对成形件力学性能的影响。结果表明,激光冲击处理使选区激光熔化(SLM)试样中的残余拉应力转变为残余压应力,并有效改善其内部冶金缺陷。同时,在激光冲击波作用下,粗的α'马氏体中产生了高密度的位错结构和大量2个方向的孪晶,共同促进了α'马氏体的晶粒细化。激光热力交互增材制造Ti6Al4V合金的极限抗拉强度和延伸率分别达到了1543 MPa和15.53%,相比于SLM成形件,分别提高了46.5%和91.5%,具有良好的强度和塑性匹配。

关键词 选区激光熔化激光冲击强化Ti6Al4V合金残余应力微观组织力学性能    
Abstract

To meet the requirements of the long fatigue life and high reliability of the key components of the aeroengine as well as solve the challenges of “structure control” and “performance control” based on the fact that plastic deformation can effectively eliminate internal stress and close metallurgical defects generated by the thermal effect, a laser integrated additive manufacturing technology with alternately thermal/mechanical effects is developed. In this study, Ti6Al4V alloy was chosen as the research object. The distributions of residual stress and metallurgical defects and the microstructural evolution of the formed components were systematically studied. The effects of surface laser shock peening (LSP) and interlayer LSP without coating (LSPwC) treatments on mechanical properties were investigated using a tensile test. The results showed that after LSP, tensile residual stress was transformed into compressive residual stress. Additionally, laser shock waves could effectively improve the metallurgical defects in selective laser melting (SLM)-formed components. Moreover, high-density dislocation structures and numerous twins in two directions were produced in coarse α' martensite by laser shock waves, which jointly promoted the grain refinement of α' martensite. The ultimate tensile strength and elongation of Ti6Al4V fabricated by the laser integrated additive manufacturing technology with alternately thermal/mechanical effects reached 1543 MPa and 15.53%, which are 46.5% and 91.5% higher than those of the SLM-formed components, respectively, yielding a good combination of strength and ductility.

Key wordsselective laser melting    laser shock peening    Ti6Al4V alloy    residual stress    microstructure    mechanical property
收稿日期: 2022-01-11     
ZTFLH:  TG146  
基金资助:国家自然科学基金项目(52175409);国家自然科学基金项目(52175323);江苏省科技计划项目(BE2021072);江苏省科技计划项目(BE2022069-4)
作者简介: 卢海飞,男,1994年生,博士
图1  选区激光熔化(SLM)、激光冲击强化(LSP)、SLM和SLM-LSP试样制备及拉伸试样尺寸示意图
图2  SLM和SLM-LSP试样沿深度方向的残余应力分布
图3  SLM和SLM-LSP试样截面OM像
图4  SLM试样表层的TEM像
图5  SLM-LSP试样表层的TEM像
图6  SLM-LSP试样表层中位错结构的TEM分析
图7  SLM和SLM-LSP试样三维孔隙特征的三维重建图以及缺陷尺寸和数量的统计结果
图8  SLM和SLM-LSP拉伸试样的工程应力-应变曲线
图9  SLM和SLM-LSP拉伸试样断口形貌的SEM像
1 Zhao Y Q, Xi Z P, Qu H L. Current situation of titanium alloy materials used for national aviation [J]. J. Aeronaut. Mater., 2003, 23(): 215
1 赵永庆, 奚正平, 曲恒磊. 我国航空用钛合金材料研究现状 [J]. 航空材料学报, 2003, 23(suppl.) : 215
2 Machado A R, Wallbank J. Machining of titanium and its alloys—A review [J]. Proc. Inst. Mech. Eng., 1990, 204B: 53
3 Wang M, Lin X, Huang W. Laser additive manufacture of titanium alloys [J]. Mater. Technol., 2016, 31: 90
4 Liang Z Y, Zhang A F, Liang S D, et al. Research developments of high-performance titanium alloy by laser additive manufacturing technology [J]. Appl. Laser, 2017, 37: 452
4 梁朝阳, 张安峰, 梁少端 等. 高性能钛合金激光增材制造技术的研究进展 [J]. 应用激光, 2017, 37: 452
5 Mercelis P, Kruth J P. Residual stresses in selective laser sintering and selective laser melting [J]. Rapid Prototyp. J., 2006, 12: 254
doi: 10.1108/13552540610707013
6 Qiu C L, Panwisawas C, Ward M, et al. On the role of melt flow into the surface structure and porosity development during selective laser melting [J]. Acta Mater., 2015, 96: 72
doi: 10.1016/j.actamat.2015.06.004
7 Wu Z K, Wu S C, Zhang J, et al. Defect induced fatigue behaviors of selective laser melted Ti-6Al-4V via synchrotron radiation X-ray tomography [J]. Acta Metall. Sin., 2019, 55: 811
doi: 10.11900/0412.1961.2018.00408
7 吴正凯, 吴圣川, 张 杰 等. 基于同步辐射X射线成像的选区激光熔化Ti-6Al-4V合金缺陷致疲劳行为 [J]. 金属学报, 2019, 55: 811
doi: 10.11900/0412.1961.2018.00408
8 Lv Y, Lei L Q, Sun L N. Influence of different combined severe shot peening and laser surface melting treatments on the fatigue performance of 20CrMnTi steel gear [J]. Mater. Sci. Eng., 2016, A658: 77
9 Chen A Y, Jia Y Q, Pan D, et al. Reinforcement of laser-welded stainless steels by surface mechanical attrition treatment [J]. Mater. Sci. Eng., 2013, A571: 161
10 Colegrove P A, Coules H E, Fairman J, et al. Microstructure and residual stress improvement in wire and arc additively manufactured parts through high-pressure rolling [J]. J. Mater. Process. Technol., 2013, 213: 1782
doi: 10.1016/j.jmatprotec.2013.04.012
11 Fan Y J, Zhao X H, Liu Y. Research on fatigue behavior of the flash welded joint enhanced by ultrasonic peening treatment [J]. Mater. Des., 2016, 94: 515
doi: 10.1016/j.matdes.2016.01.070
12 Hatamleh O. A comprehensive investigation on the effects of laser and shot peening on fatigue crack growth in friction stir welded AA 2195 joints [J]. Int. J. Fatigue, 2009, 31: 974
doi: 10.1016/j.ijfatigue.2008.03.029
13 Montross C S, Wei T, Lin Y, et al. Laser shock processing and its effects on microstructure and properties of metal alloys: A review [J]. Int. J. Fatigue, 2002, 24: 1021
doi: 10.1016/S0142-1123(02)00022-1
14 Gao Y K. Influence of different surface modification treatments on surface integrity and fatigue performance of TC4 titanium alloy [J]. Acta Metall. Sin., 2016, 52: 915
14 高玉魁. 不同表面改性强化处理对TC4钛合金表面完整性及疲劳性能的影响 [J]. 金属学报, 2016, 52: 915
doi: 10.11900/0412.1961.2015.00628
15 Dorman M, Toparli M B, Smyth N, et al. Effect of laser shock peening on residual stress and fatigue life of clad 2024 aluminium sheet containing scribe defects [J]. Mater. Sci. Eng., 2012, A548: 142
16 Luo K Y, Jing X, Sheng J, et al. Characterization and analyses on micro-hardness, residual stress and microstructure in laser cladding coating of 316L stainless steel subjected to massive LSP treatment [J]. J. Alloys Compd., 2016, 673: 158
doi: 10.1016/j.jallcom.2016.02.266
17 Kalentics N, Boillat E, Peyre P, et al. Tailoring residual stress profile of selective laser melted parts by laser shock peening [J]. Addit. Manuf., 2017, 16: 90
18 Luo S H, He W F, Chen K, et al. Regain the fatigue strength of laser additive manufactured Ti alloy via laser shock peening [J]. J. Alloys Compd., 2018, 750: 626
doi: 10.1016/j.jallcom.2018.04.029
19 Sun R J, Li L H, Zhu Y, et al. Microstructure, residual stress and tensile properties control of wire-arc additive manufactured 2319 aluminum alloy with laser shock peening [J]. J. Alloys Compd., 2018, 747: 255
doi: 10.1016/j.jallcom.2018.02.353
20 Chi J X, Cai Z Y, Wan Z D, et al. Effects of heat treatment combined with laser shock peening on wire and arc additive manufactured Ti17 titanium alloy: Microstructures, residual stress and mechanical properties [J]. Surf. Coat. Technol., 2020, 396: 125908
doi: 10.1016/j.surfcoat.2020.125908
21 Guo W, Sun R J, Song B W, et al. Laser shock peening of laser additive manufactured Ti6Al4V titanium alloy [J]. Surf. Coat. Technol., 2018, 349: 503
doi: 10.1016/j.surfcoat.2018.06.020
22 Chi J X, Cai Z Y, Zhang H P, et al. Combining manufacturing of titanium alloy through direct energy deposition and laser shock peening processes [J]. Mater. Des., 2021, 203: 109626
doi: 10.1016/j.matdes.2021.109626
23 Lan L, Jin X Y, Gao S, et al. Microstructural evolution and stress state related to mechanical properties of electron beam melted Ti-6Al-4V alloy modified by laser shock peening [J]. J. Mater. Sci. Technol., 2020, 50: 153
doi: 10.1016/j.jmst.2019.11.039
24 Jin X Y, Lan L, Gao S, et al. Effects of laser shock peening on microstructure and fatigue behavior of Ti-6Al-4V alloy fabricated via electron beam melting [J]. Mater. Sci. Eng., 2020, A780: 139199
25 Peyre P, Carboni C, Forget P, et al. Influence of thermal and mechanical surface modifications induced by laser shock processing on the initiation of corrosion pits in 316L stainless steel [J]. J. Mater. Sci., 2007, 42: 6866
doi: 10.1007/s10853-007-1502-4
26 Kalentics N, Boillat E, Peyre P, et al. 3D laser shock peening—A new method for the 3D control of residual stresses in selective laser melting [J]. Mater. Des., 2017, 130: 350
doi: 10.1016/j.matdes.2017.05.083
27 Kalentics N, Sohrabi N, Tabasi H G, et al. Healing cracks in selective laser melting by 3D laser shock peening [J]. Addit. Manuf., 2019, 30: 100881
28 Kalentics N, de Seijas M O V, Griffiths S, et al. 3D Laser shock peening—A new method for improving fatigue properties of selective laser melted parts [J]. Addit. Manuf., 2020, 33: 101112
29 Bartlett J L, Li X D. An overview of residual stresses in metal powder bed fusion [J]. Addit. Manuf., 2019, 27: 131
doi: 10.1016/j.addma.2019.02.020
30 Lu J Z, Wu L J, Sun G F, et al. Microstructural response and grain refinement mechanism of commercially pure titanium subjected to multiple laser shock peening impacts [J]. Acta Mater., 2017, 127: 252
doi: 10.1016/j.actamat.2017.01.050
31 Cloots M, Uggowitzer P J, Wegener K. Investigations on the microstructure and crack formation of IN738LC samples processed by selective laser melting using Gaussian and doughnut profiles [J]. Mater. Des., 2016, 89: 770
doi: 10.1016/j.matdes.2015.10.027
32 Liu X Q, Tan C W, Zhang J, et al. Influence of microstructure and strain rate on adiabatic shearing behavior in Ti-6Al-4V alloys [J]. Mater. Sci. Eng., 2009, A501: 30
33 Leuders S, Thöne M, Riemer A, et al. On the mechanical behaviour of titanium alloy TiAl6V4 manufactured by selective laser melting: Fatigue resistance and crack growth performance [J]. Int. J. Fatigue, 2013, 48: 300
doi: 10.1016/j.ijfatigue.2012.11.011
34 Sanaty-Zadeh A. Comparison between current models for the strength of particulate-reinforced metal matrix nanocomposites with emphasis on consideration of Hall-Petch effect [J]. Mater. Sci. Eng., 2012, A531: 112
35 Lu K, Lu L, Suresh S. Strengthening materials by engineering coherent internal boundaries at the nanoscale [J]. Science, 2009, 324: 349
doi: 10.1126/science.1159610 pmid: 19372422
36 Wang C L, Yu D P, Niu Z Q, et al. The role of pyramidal <c + a> dislocations in the grain refinement mechanism in Ti-6Al-4V alloy processed by severe plastic deformation [J]. Acta Mater., 2020, 200: 101
doi: 10.1016/j.actamat.2020.08.076
37 Liu W H, Wu Y, He J Y, et al. Grain growth and the Hall-Petch relationship in a high-entropy FeCrNiCoMn alloy [J]. Scr. Mater., 2013, 68: 526
doi: 10.1016/j.scriptamat.2012.12.002
38 Tian X N, Zhu Y M, Lim C V S, et al. Isotropic and improved tensile properties of Ti-6Al-4V achieved by in-situ rolling in direct energy deposition [J]. Addit. Manuf., 2021, 46: 102151
39 Vandenbroucke B, Kruth J P. Selective laser melting of biocompatible metals for rapid manufacturing of medical parts [J]. Rapid Prototyp. J., 2007, 13: 196
doi: 10.1108/13552540710776142
40 Lv J M, Luo K Y, Lu H F, et al. Achieving high strength and ductility in selective laser melting Ti-6Al-4V alloy by laser shock peening [J]. J. Alloys Compd., 2022, 899: 163335
doi: 10.1016/j.jallcom.2021.163335
41 Lu H F, Wu L J, Wei H L, et al. Microstructural evolution and tensile property enhancement of remanufactured Ti6Al4V using hybrid manufacturing of laser directed energy deposition with laser shock peening [J]. Addit. Manuf., 2022, 55: 102877
[1] 杜金辉, 毕中南, 曲敬龙. 三联冶炼GH4169合金研究进展[J]. 金属学报, 2023, 59(9): 1159-1172.
[2] 毕中南, 秦海龙, 刘沛, 史松宜, 谢锦丽, 张继. 高温合金锻件残余应力量化表征及控制技术研究进展[J]. 金属学报, 2023, 59(9): 1144-1158.
[3] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[4] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[5] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[6] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[7] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[8] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[9] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[10] 刘兴军, 魏振帮, 卢勇, 韩佳甲, 施荣沛, 王翠萍. 新型钴基与Nb-Si基高温合金扩散动力学研究进展[J]. 金属学报, 2023, 59(8): 969-985.
[11] 李时磊, 李阳, 王友康, 王胜杰, 何伦华, 孙光爱, 肖体乔, 王沿东. 基于中子与同步辐射技术的工程材料/部件多尺度残余应力评价[J]. 金属学报, 2023, 59(8): 1001-1014.
[12] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[13] 冯艾寒, 陈强, 王剑, 王皞, 曲寿江, 陈道伦. 低密度Ti2AlNb基合金热轧板微观组织的热稳定性[J]. 金属学报, 2023, 59(6): 777-786.
[14] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[15] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.