Please wait a minute...
金属学报  2014, Vol. 50 Issue (8): 971-978    DOI: 10.11900/0412.1961.2013.00767
  本期目录 | 过刊浏览 |
Al-20Mg合金高压凝固力学性能研究*
接金川1,2, 邹鹑鸣1, 王宏伟1, 魏尊杰1()
1 哈尔滨工业大学材料科学与工程学院金属精密热加工国家级重点实验室, 哈尔滨 115110
2 大连理工大学材料科学与工程学院, 大连 116024
MECHANICAL BEHAVIOR OF Al-20Mg ALLOY SOLIDIFIED UNDER HIGH PRESSURE
JIE Jinchuan1,2, ZOU Chunming1, WANG Hongwei1, WEI Zunjie1()
1 National Key Laboratory of Metal Precision Hot Forming, School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 115110
2 School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024
引用本文:

接金川, 邹鹑鸣, 王宏伟, 魏尊杰. Al-20Mg合金高压凝固力学性能研究*[J]. 金属学报, 2014, 50(8): 971-978.
Jinchuan JIE, Chunming ZOU, Hongwei WANG, Zunjie WEI. MECHANICAL BEHAVIOR OF Al-20Mg ALLOY SOLIDIFIED UNDER HIGH PRESSURE[J]. Acta Metall Sin, 2014, 50(8): 971-978.

全文: PDF(2559 KB)   HTML
摘要: 

将Al-20Mg合金在不同压力下凝固, 采用OM, XRD以及拉伸实验对合金凝固后的物相组织及力学性能进行研究. 结果表明, 随着凝固压力的升高, Mg元素在Al基体中的固溶度提高, 当凝固压力为2 GPa时, Al-20Mg合金转变成为过饱和固溶体, 其力学性能显著提高, 合金的抗拉强度提高到474.8 MPa, 是常压凝固之后合金抗拉强度的8.9倍, 屈服强度达到232.8 MPa, 延伸率也达到11.1%. 当凝固压力增加到3 GPa时, 合金的屈服强度有所下降, 这是由于更高压力下凝固后Mg在固溶体中的均匀分布会降低合金的力学性能. 高压凝固后Al-20Mg合金的断裂机制由常压下的解理断裂转变为高压下的韧性断裂.

关键词 Al-Mg合金高压凝固固溶体力学性能断裂机制    
Abstract

Pressure is, like temperature, a basic thermodynamic variable which can be used to alter the matter state. The atom volume, free energy of matter and other physical and chemical properties can be changed due to the application of high pressure. Many interesting materials including superconducting, super-hard, amorphous, nano-materials can be prepared under high pressures. Meanwhile, the application of high pressure during solidification of metallic materials has also attracted much attention of researchers in recent years. However, the understanding of high pressure on alloy solidification behavior is still lacked, and needs more experimental and theoretical investigation. In the present work, the effect of high pressure on solidification microstructure, phase constitution and mechanical properties of Al-20Mg alloy was investigated by OM, XRD and tensile test. Influence of solute distribution on mechanical properties of solid solution was analyzed and the corresponding mechanism was discussed based on the solute strengthening theory. The results showed that the amount of intermetallic compound b-Al3Mg2 decreases and the amount of Al(Mg) solid solution increases in the Al-20Mg alloy solidified under high pressure, resulting in the remarkable enhancement of the mechanical properties. The Al-20Mg alloy is fragile under 1.0×105 Pa. However, it can transform to be a ductile material with elongation of 11% when solidified under 2 and 3 GPa. Meanwhile, its strength can be also greatly improved. The ultimate tensile strength of Al-20Mg alloy solidified under 2 GPa is 8.9 times of that solidified under 1.0×105 Pa. The yield strength of Al-20Mg alloy solidified under 2 GPa is higher than that under 3 GPa. This phenomenon was explained by solute strengthening theory, and proved that the inhomogeneous distribution of Mg solute in the solid solution can enhance the mechanical properties. The fracture characteristic is essentially altered under the condition of high pressure solidification. The Al-20Mg alloy is cleavage fracture under 105 Pa, however, it transforms to the dimple fracture when solidified under 2 and 3 GPa. The present work provides a potential route to improve the mechanical properties of solid solution through the control of solute distribution in the solid solution.

Key wordsAl-Mg alloy    high pressure solidification    solid solution    mechanical property    fracture mechanism
收稿日期: 2013-11-25     
ZTFLH:  TG249.7  
基金资助:* 国家自然科学基金项目 51171054和51001041及博士后科学基金项目2013M530913资助
作者简介: null

接金川, 男, 1981年生, 博士

图1  高压凝固过程示意图及拉伸试样的尺寸
图2  在不同压力下凝固的Al-20Mg合金的XRD谱
图3  Al-20Mg合金在不同压力下的凝固组织
Condition Tensile strength / MPa Yield strength / MPa Elongation / % Grain size / mm
1.0×105 Pa 53.5 0.05 0.1
1 GPa 105.1 0.15 0.3
2 GPa 474.8 232.8 11.10 0.3
3 GPa 430.1 198.1 11.10 0.4
表1  Al-20Mg合金在不同压力凝固后的拉伸性能及晶粒尺寸
图4  Al-20Mg合金在2和3 GPa压力下凝固的真实应力-应变曲线
图5  Al-12Mg合金在2 GPa压力下凝固以及固溶处理后的XRD谱
Condition Grain size / mm Tensile property / MPa Yield strength / MPa Elongation / %
2 GPa 1.0 458.5 203.7 18.2
2 GPa and homogenized 1.1 420.2 185.8 17.4
表2  不同条件下Al-12Mg合金的拉伸性能及晶粒尺寸
图6  Al-20Mg合金在不同压力下凝固后的拉伸断口形貌
[1] Mcmillan P F. Nat Mater, 2002; 1: 19
[2] Sharma S M, Sikka S K. Prog Mater Sci, 1996; 40: 1
[3] Zaug J M, Soper A K, Clark S M. Nat Mater, 2008; 7: 890
[4] Liao S C, Mayo W E, Pae K D. Acta Mater, 1997; 45: 4027
[5] Wei Z J, Wang Z L,Wang H W, Cao L. J Mater Sci, 2007; 42: 7123
[6] He D W, He M, Kiminami C S, Kuo K H, Zhang F X, Xu Y F, Wang W K. J Mater Res, 2001; 16: 910
[7] Zhang G Z, Yu X F, Wang X Y, Jia G L, Gao Y Y, Hao Z Y, Guo X B. Acta Metall Sin, 1999; 35: 285
[7] (张国志, 于溪凤, 王向阳, 贾光霖, 高允彦, 郝兆印, 郭学彬. 金属学报, 1999; 35: 285)
[8] Zhang J, Zhang H F, Dong P, Quan M X, Hu Z Q. Acta Metall Sin, 2004; 40: 211
[8] (张 甲, 张海峰, 董 盼, 全明秀, 胡壮麒. 金属学报, 2004; 40: 211)
[9] Canadinc D, Maier H J, Gabor P, May J. Mater Sci Eng, 2008; A496: 114
[10] Cui G R, Ma Z Y, Li S X. Scr Mater, 2008; 58: 1082
[11] Jie J C, Zou C M, Wang H W, Wei Z J. Mater Lett, 2010; 64: 869
[12] Jie J C, Zou C M, Brosh E, Wang H W, Wei Z J, Li T J. J Alloys Compd, 2013; 578: 394
[13] Starink M J, Zahra A M. Acta Mater, 1998; 46: 3381
[14] Zhang D L, Massalski T B, Paruchuri M R. Metall Mater Trans, 1994; 25A: 73
[15] Schoenitz M, Dreizin E L. J Mater Res, 2003; 18: 1827
[16] Scudino S, Sperling S, Sakaliyska M, Thomas C, Feuerbacher M, Kim K B, Ehrenberg H, Eckert J. Acta Mater, 2008; 56: 1136
[17] Scudino S, Sakaliyska M, Surreddi K B, Eckert J. J Alloys Compd, 2009; 483: 2
[18] Mourik P V, Maaswinkel N M, Keijser T H D, Mittemeijer E J. J Mater Sci, 1989; 24: 3779
[19] Vacher P, Boudrahem S. Acta Mater, 2006; 54: 4365
[20] Hall E O. Proceedings Phys Soc London, 1951; 64B: 747
[21] Petch N J. J Iron Steel Inst, 1953; 174: 25
[22] Mukai T, Higashi K, Tanimura S. Mater Sci Eng, 1994; A176: 181
[23] Chen X, Yan J, Karlsson A. Mater Sci Eng, 2006; A416: 139
[24] Deng D. Mater Des, 2009; 30: 359
[25] Lados D A, Apelian D, Wang L. Mater Sci Eng, 2010; A527: 3159
[26] Wang T G, Zhao S S, Hua W G, Li J B, Gong J, Sun C. Mater Sci Eng, 2010; A527: 454
[1] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[2] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[3] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[4] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[5] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[6] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[7] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[8] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[9] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[10] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[11] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[12] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[13] 李述军, 侯文韬, 郝玉琳, 杨锐. 3D打印医用钛合金多孔材料力学性能研究进展[J]. 金属学报, 2023, 59(4): 478-488.
[14] 吴欣强, 戎利建, 谭季波, 陈胜虎, 胡小锋, 张洋鹏, 张兹瑜. Pb-Bi腐蚀Si增强型铁素体/马氏体钢和奥氏体不锈钢的研究进展[J]. 金属学报, 2023, 59(4): 502-512.
[15] 王虎, 赵琳, 彭云, 蔡啸涛, 田志凌. 激光熔化沉积TiB2 增强TiAl基合金涂层的组织及力学性能[J]. 金属学报, 2023, 59(2): 226-236.