
中国城市知识创新职能空间分异及其影响因素
Spatial pattern of urban knowledge innovation function in China and its influencing factors
知识创新是城市创新职能的重要组成部分和现代城市发展的重要基础。本文结合知识创新的多学科研究内容,从城市地理学城市职能的视角,构建了城市知识创新职能的测度框架并分析其空间格局及影响因素。结论如下:① 城市知识创新职能是以内在知识存量和外在实践条件为基础,以满足人类新时代生存和发展需求,在知识创造、知识传播及知识应用过程中所承担的任务和所起的作用,测度维度包括职能规模、职能强度、职能尺度和职能活力;② 中国城市知识创新职能发展水平不均衡,知识创新职能突出的城市主要集中在东部沿海及中西部少数发达地区,形成以京津、长三角、珠三角、陕成渝和中部武汉合肥为四顶点和中心的菱形知识创新结构,根据Jenks自然断点法划分为国家级、区域级、地区级和知识创新发展型城市;③ 城市知识创新职能空间分异特征同时受人文环境、自然环境各因素共同影响,其中经济环境、对外开放环境和文化环境与其他因子交互解释力最强,是影响城市知识创新职能发展的主导因素。未来中国应全方位提升城市的知识创新职能,充分考虑城市自身知识经济发展的现状及特点,制定适合城市知识经济发展的政策与措施,强化人文社会因素在城市知识创新职能建设中的主导地位。
Knowledge innovation is an important part and development foundation of urban innovation functions. Combined with the multidisciplinary research content of knowledge innovation, this paper constructs a measurement framework for urban knowledge innovation function from the perspective of urban geography and analyzes its spatial pattern and influencing factors. The conclusions are as follows: (1) The urban knowledge innovation function is based on the internal knowledge stock and external practical conditions to meet the survival and development needs of the new era of mankind, the tasks and roles undertaken in the process of knowledge creation, knowledge dissemination and knowledge application, and the measurement dimensions include functional scale, functional strength, functional scope and functional vitality. (2) The level of development of knowledge innovation functions in Chinese cities is uneven, and the cities with outstanding knowledge innovation functions are mainly concentrated in the eastern coastal areas and a few developed areas in the central and western regions, forming a diamond-shaped knowledge innovation structure with Beijing-Tianjin, Yangtze River Delta, Pearl River Delta, Shaanxi-Chengdu-Chongqing, and Wuhan and Hefei in central China as vertices and centers, and divided into national, regional, regional and knowledge innovation development cities according to the natural breaks (Jenks). (3) In terms of influencing factors, the spatial differentiation characteristics of urban knowledge innovation functions are simultaneously affected by various factors of human environment and natural environment, among which the economic environment, the open environment and the cultural environment have the strongest interactive interpretation power on other factors, which is the leading factor affecting the development of urban knowledge innovation functions. In the future, China should take the initiative to enhance the knowledge innovation function of the city, fully consider the current situation and characteristics of the development of the city's own knowledge economy, formulate policies and measures suitable for the development of the city's knowledge economy, and strengthen the dominant position of human and social factors in the construction of urban knowledge innovation function.
知识创新职能 / 职能规模 / 职能强度 / 职能活力 / 职能尺度 / 影响因素 {{custom_keyword}} /
knowledge innovation function / functional scale / functional strength / functional vitality / functional scope / influencing factor {{custom_keyword}} /
表1 知识密集型产业的行业范围及权重系数Tab. 1 Industrial scope and weight coefficient of knowledge intensive industry |
知识密集型制造业 | 权重系数 | 知识密集型服务业 | 权重系数 |
---|---|---|---|
C26化学原料及化学品制造业 | 0.031 | I信息传输、软件和信息技术服务业 | 0.122 |
C27医药制造业 | 0.015 | J金融业 | 0.192 |
C34通用设备制造业 | 0.031 | L租赁和商务服务业 | 0.045 |
C35专用设备制造业 | 0.032 | M科学研究和技术服务业 | 0.312 |
C36汽车制造业 | 0.049 | ||
C37铁路、船舶、航空航天和其他运输设备制造业 | 0.049 | ||
C38电气机械和器材制造业 | 0.037 | ||
C39计算机、通信和其他电子设备制造业 | 0.073 | ||
C40仪器仪表制造业 | 0.009 |
表2 城市知识创新职能评价指标权重赋值Tab. 2 Evaluation index weight assignment of urban knowledge innovation function |
目标层 | 权重 | 基本层 | 权重 |
---|---|---|---|
职能规模 | 0.237 | 显性知识存量(X1) | 0.637 |
隐性知识存量(X2) | 0.363 | ||
职能强度 | 0.247 | 知识密集型产业集中系数(CCij) | 0.562 |
知识创新职能专业化指数(Rij) | 0.438 | ||
职能尺度 | 0.265 | 知识创新中心性指数(Yi) | 0.582 |
知识流强度(F) | 0.418 | ||
职能活力 | 0.251 | 知识创造能力指数(O) | 0.304 |
知识更新速率值(V) | 0.349 | ||
知识应用能力指数(G) | 0.348 |
表3 地理探测器交互作用类型及判别依据Tab. 3 Interaction types and discrimination basis of geographic detectors |
交互作用类型 | 判别依据 |
---|---|
双因子增强 | q(X1∩X2) > Max[q(X1), q(X2)] |
非线性增强 | q(X1∩X2) > q(X1)+q(X2) |
非线性减弱 | q(X1∩X2) < Min[q(X1), q(X2)] |
单因子非线性减弱 | Min[q(X1), q(X2)] < q(X1∩X2) < Max[q(X1), q(X2)] |
独立 | q(X1∩X2) = q(X1)+q(X2) |
表4 前10名城市知识创新职能各指标得分及综合得分Tab. 4 Scores of indexes and comprehensive scores of knowledge innovation functions in the top 10 cities |
城市 | 显性知识存量 | 隐性知识存量 | 产业集中系数 | 专业化指数 | 知识创新中心性指数 | 知识流 强度 | 知识 创造 | 知识 更新 | 知识 应用 | 职能规模得分 | 职能强度得分 | 职能尺度得分 | 职能活力得分 | 综合 得分 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
北京 | 28.435 | 47.707 | 6.683 | 1.750 | 7.710 | 11734818 | 24.222 | 8.097 | 1.645 | 0.237 | 0.187 | 0.265 | 0.150 | 0.838 |
深圳 | 13.986 | 11.874 | 11.753 | 1.588 | 2.934 | 10444050 | 14.173 | 25.153 | 2.162 | 0.095 | 0.236 | 0.164 | 0.182 | 0.678 |
上海 | 18.152 | 19.773 | 4.969 | 1.425 | 4.640 | 7730270 | 21.297 | 11.214 | 2.068 | 0.132 | 0.145 | 0.170 | 0.160 | 0.607 |
南京 | 12.057 | 3.200 | 3.521 | 1.295 | 3.034 | 9791998 | 10.222 | 5.807 | 3.653 | 0.069 | 0.119 | 0.159 | 0.148 | 0.496 |
广州 | 14.092 | 11.472 | 4.239 | 1.316 | 3.393 | 2909989 | 15.207 | 18.936 | 1.460 | 0.095 | 0.129 | 0.101 | 0.149 | 0.475 |
苏州 | 9.520 | 2.674 | 4.443 | 1.393 | 1.906 | 7820685 | 9.841 | 2.227 | 2.229 | 0.055 | 0.137 | 0.120 | 0.101 | 0.412 |
东莞 | 5.462 | 0.319 | 6.662 | 1.180 | 0.767 | 5386130 | 5.845 | 10.816 | 2.400 | 0.029 | 0.149 | 0.075 | 0.118 | 0.372 |
天津 | 9.903 | 2.665 | 3.028 | 1.289 | 2.231 | 2492951 | 12.402 | 4.008 | 0.676 | 0.057 | 0.113 | 0.076 | 0.076 | 0.321 |
成都 | 10.956 | 12.456 | 1.595 | 1.254 | 2.572 | 467761 | 13.064 | 0.535 | 1.275 | 0.080 | 0.094 | 0.063 | 0.082 | 0.319 |
杭州 | 9.008 | 5.328 | 3.319 | 1.269 | 1.902 | 1638348 | 9.771 | 2.432 | 1.307 | 0.057 | 0.115 | 0.061 | 0.078 | 0.312 |
表5 中国182个城市知识创新职能等级类型Tab. 5 Types of knowledge innovation functions in 182 cities in China |
等级体系 | 特征描述 | 得分范围 | 城市 |
---|---|---|---|
第一等级 | 国家知识创新中心城市(Ⅰ) | [0.5, 1) | 北京、深圳、上海 |
第二等级 | 区域知识创新中心城市(Ⅱ) | [0.20, 0.50) | 南京、广州、苏州、东莞、天津、成都、杭州、西安、武汉、重庆、郑州、佛山、长沙、青岛、无锡、合肥、长春、宁波、厦门 |
第三等级 | 地区知识创新中心城市(Ⅲ) | [0.12, 0.20) | 沈阳、常州、珠海、济南、大连、中山、扬州、泰州、南通、镇江、吉林、福州、徐州、潍坊、南昌、太原、嘉兴、哈尔滨、昆明、盐城、烟台、江门、石家庄、惠州、温州、威海、贵阳、襄阳、保定、东营、泉州、洛阳、南宁 |
第四等级 | 知识创新发展型城市(Ⅳ) | [0, 0.12) | 宜昌、连云港、十堰、聊城、金华、邵阳、吉安、清远、绵阳、秦皇岛、滁州、邢台、河源、景德镇、赣州、台州、南阳、桂林、绍兴、淄博、德州、新乡、肇庆、濮阳、宁德、信阳、汕头、安庆、岳阳、湖州、汕尾、荆州、梅州、咸宁、柳州、兰州、孝感、上饶、郴州、丽水、西宁、淮安、济宁、安阳、云浮、乌鲁木齐、邢台、沧州、宿迁、漳州、衢州、滨州、宜城、马鞍山、菏泽、毕节、晋中、遂宁、三明、廊坊、眉山、安康、佳木斯、阜阳、运城、亳州、邯郸、南平、银川、临沂、黄冈、承德、衡水、开封、乐山、自贡、九江、阳江、泸州、齐齐哈尔、定西、荆门、龙岩、韶关、宜宾、安顺、呼和浩特、唐山、内江、泰安、临汾、资阳、海口、石嘴山、淮北、蚌埠、平顶山、长治、宿州、莆田、枣庄、咸阳、茂名、黄石、晋城、吕梁、铜陵、张掖、黄山、汉中、四平、商丘、淮南、盘锦、来宾、六安、抚州、三门峡、日照、铜川、鹰潭、随州、包头、池州、鄂尔多斯、新余、榆林、嘉峪关。 |
表6 城市知识创新职能影响因素各指标的权重Tab. 6 Weight of each index of influencing factors of urban knowledge innovation function |
目标层 | 要素层 | 指标层 | 权重 | 功效性 |
---|---|---|---|---|
城市知识 创新职能 影响因素 | 自然环境(NAT) | X1 每万人所占绿地面积(hm2) | 0.411 | 正向指标 |
X2 PM2.5(μg/m3) | 0.589 | 负向指标 | ||
文化环境(CUL) | X3 每万拥有人公共图书馆藏书量(万册) | 0.234 | 正向指标 | |
X4 每万人拥有博物馆数(个) | 0.263 | 正向指标 | ||
X5 中小学教师数(人) | 0.289 | 正向指标 | ||
X6 普通高等学校数(个) | 0.214 | 正向指标 | ||
基础设施(INF) | X7 每万人拥有公共汽(电)车营运车辆数(辆) | 0.324 | 正向指标 | |
X8 每万人拥有出租车营运车辆数(辆) | 0.315 | 正向指标 | ||
X9 每万人接入互联网端口数(个) | 0.361 | 正向指标 | ||
医疗环境(MED) | X10 医院数(个) | 0.329 | 正向指标 | |
X11 每万人拥有医院床位数(张) | 0.340 | 正向指标 | ||
X12 每万人拥有执业(助理)医师数(人) | 0.331 | 正向指标 | ||
社会保障环境(SOC) | X13 每万人参与城镇职工基本养老保险人数(人) | 0.362 | 正向指标 | |
X14 每万人参与城镇职工基本医疗保险人数(人) | 0.338 | 正向指标 | ||
X15 每万人参与失业保险人数(人) | 0.300 | 正向指标 | ||
经济环境(ECO) | X16 人均地区生产总值(元) | 0.429 | 正向指标 | |
X17 年末金融机构人民币各项存款余额(万元) | 0.276 | 正向指标 | ||
X18 年末金融机构人民币各项贷款余额(万元) | 0.295 | 正向指标 | ||
产业环境(IND) | X19 第三产业占地区生产总值的比重(%) | 0.505 | 正向指标 | |
X20 第三产业就业人数占地区总就业人数比重(%) | 0.495 | 正向指标 | ||
对外开放度(OPE) | X21 外商直接投资金额(万美元) | 0.347 | 正向指标 | |
X22 公路客运量(万人) | 0.478 | 正向指标 | ||
X23 民用航空客运量(万人) | 0.175 | 正向指标 | ||
政策环境(POL) | X24 科技财政支出占总支出的比重(%) | 1 | 正向指标 |
表7 因子探测器结果Tab. 7 Factor detector results |
影响因子 | NAT | CUL | INF | MED | SOC | ECO | IND | OPE | POL |
---|---|---|---|---|---|---|---|---|---|
q | 0.116 | 0.637 | 0.561 | 0.534 | 0.436 | 0.436 | 0.257 | 0.593 | 0.344 |
p | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
表8 交互作用探测结果解释Tab. 8 Interaction detection results |
NAT | CUL | INF | MED | SOC | ECO | IND | OPE | POL | |
---|---|---|---|---|---|---|---|---|---|
NAT | 0.116 | ||||||||
CUL | 0.768* | 0.637 | 解释力度 | ||||||
INF | 0.698* | 0.750+ | 0.561 | < 0.3 | |||||
MED | 0.742* | 0.747+ | 0.671+ | 0.534 | 0.3~0.5 | ||||
SOC | 0.658* | 0.800+ | 0.681+ | 0.659+ | 0.436 | ≥ 0.5 | |||
ECO | 0.770* | 0.832+ | 0.762+ | 0.808+ | 0.730+ | 0.436 | |||
IND | 0.341+ | 0.730+ | 0.689+ | 0.695+ | 0.520+ | 0.708+ | 0.257 | ||
OPE | 0.706+ | 0.762+ | 0.798+ | 0.771+ | 0.812+ | 0.845+ | 0.700* | 0.593 | |
POL | 0.586* | 0.798+ | 0.807+ | 0.737+ | 0.660+ | 0.749+ | 0.510* | 0.743+ | 0.344 |
注:*表示非线性增强,+表示双因子增强。 |
[1] |
[ 王建军, 许学强. 城市职能演变的回顾与展望. 人文地理, 2004, 19(3): 12-16.]
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[2] |
[ 吕拉昌, 李永洁, 刘毅华. 城市创新职能与创新城市空间体系. 经济地理, 2009, 29(5): 710-713, 751.]
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[3] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[4] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[5] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[6] |
[ 张永庆. 知识经济与经济地理学的新发展. 经济地理, 1999, 19(6): 18-22.]
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[7] |
[ 汪宇明. 知识经济与区域地理创新. 世界地理研究, 2001, 10(3): 8-14.]
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[8] |
[ 晏双生. 知识创造与知识创新的涵义及其关系论. 科学学研究, 2010, 28(8): 1148-1152.]
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[9] |
[ 姜春林. 大学知识能力及其测度指标体系初探. 辽宁工程技术大学学报(社会科学版), 2007, 9(6): 612-614.]
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[10] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[11] |
Using structural equation modelling on 291 small and medium enterprises in Australia, we examine the impact of knowledge transfers from supply chain actors on innovation and firm performance and how knowledge quality influences these relationships. We find that knowledge transfers from customers and suppliers are positively related to innovativeness, which has a significant influence on firm performance. The results also show that knowledge transfers from suppliers (only) influence knowledge quality, and knowledge transfer from suppliers, in turn, has an indirect effect on innovation through knowledge quality. Thus, the results underscore the importance of knowledge transfers from suppliers to knowledge quality and knowledge transfers from suppliers through knowledge quality for achieving innovation. The results also underline the need to distinguish knowledge transfers from specific actors, in order to understand the influence of knowledge quality on external knowledge transfers and innovation, adding to research into the conditions under which external knowledge transfers contribute to innovation and firm performance.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[12] |
[ 孟晓晨, 李捷萍. 中国区域知识创新能力与区域发展差异研究. 地理学与国土研究, 2002, 18(4): 79-81, 96.]
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[13] |
[ 胡曙虹, 杜德斌, 游小珺, 等. 中国“成长三角”区域高校知识创新绩效的时空演化分析. 经济地理, 2014, 34(10): 15-22.]
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[14] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[15] |
In recent years, the emergence of the network paradigm has led to a large and growing body of scholarly research in economic geography focused on analysing the impact of innovation networks structures on knowledge flows and innovation outcomes. From a theoretical perspective, this paper aims to consider the link between networks, knowledge and innovation. Using the notion of 'network capital', whereby networks are considered to potentially offer benefits to network actors in terms of knowledge they are able to access, our paper takes 292 prefecture-level cities as the object, by using Ucinet, ArcGIS. We analyze the inter-city innovation networks structure and measure the innovation networks capital indirectly based on a unique co-patent dataset issued by the State Intellectual Property Office of P.R.China in 2014. The main findings of this study are drawn as follows: (1) The structure of the overall innovation linkages across 292 prefecture-level cities in China features 'small-world' network properties, whereby dense clusters of network actors are linked to other clusters via a relatively small number of bridging links. The city degree distribution of innovation networks is characterized by dissortative, whereby the inter-city innovation networks present a preferential attachment rule when the cities choose their innovation cooperation partners. The results demonstrate that the key nodes of innovation networks and innovative urban agglomerations can effectively improve knowledge spillovers and the value cities gain from networks. (2) The networks structure is diamond-shaped and anchored by four major metropolitan areas (Beijing-Tianjin in the North; Nanjing-Shanghai, East; Guangzhou-Shenzhen, South; Chengdu, West), which reveals a significant spatial heterogeneity. The spatial pattern of city innovation capability is degressive gradient from east to west and the high level innovation cities are in the obviously centralized distribution. The levels of city innovation capability show consistent spatial heterogeneity law with the 'structural network capital', which refers to the advantages accrued based on the structural position of cities within innovation networks. (3) The analysis strongly suggests that the centralities and structural holes of cities within innovation networks are significantly associated with the overall innovation performance of the respective cities at 0.01 confidence level. It is concluded that network structures, and resulting stocks of 'structural network capital', influence city innovation capability, indicating that network capital may be an important indicator of city innovation capability. The results of this study may provide reference for the construction of innovative cities and inter-regional innovation networks. [ 周灿, 曾刚, 曹贤忠. 中国城市创新网络结构与创新能力研究. 地理研究, 2017, 36(7): 1297-1308.]
网络范式的兴起引起了经济地理学者对于同网络结构相关的知识流动和创新产出的关注。基于“网络资本”视角,以国家知识产权局2014年中国292个地级以上城市间合作发明专利信息为原始数据,借助Ucinet、ArcGIS、SPSS等分析工具,刻画中国城市创新网络结构,间接测度创新网络资本,评价城市创新能力,进而对网络资本与城市创新关系进行探讨。研究表明:① 城市创新网络具有小世界特征和择优连接性,培育网络中心城市和创新城市群有益于优化创新网络结构,增加网络资本;② 城市创新网络空间格局呈现京津、宁沪、广深、成都等核心节点构成的菱形结构,城市创新能力空间格局与“结构性网络资本”空间分布较为一致;③ 网络资本与城市创新在0.01的水平上显著相关,据此认为,网络结构以及由此产生的网络结构资本影响城市创新能力。研究结论可为创新型城市建设和跨区域创新网络构建提供一定的参考。
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[16] |
Based on patent and dissertation database of China’s 287 cities, the evaluation system of urban innovation capability was established in the perspective of innovation output, which is concerning the temporal-spatial evolution of innovation in China during 2001-2014. Then the article constructed the spatial econometric model to analyze influencing factors. The results are as follows: from 2001 to 2014, there are great differences of regional innovation output in China, and the output weakened from east to west, which showed an obvious trend of strengthen of western. The Gini Index of regional innovation capability in China raised at first, then decreased, which indicated that the innovation spatial patterns has evolved from polarized development to balanced development. The Gini Index of eastern where innovation output mainly concentrated in showed little change, in contract, the Gini Index of western showed declined. High level innovation hotspots widely distributed in developed cities, and the cities in the innovation secondary level are distributed in the form of agglomeration. Spatial dependence characteristic of city innovation level was significant, and further strengthen over time. H-H cluster areas are mainly distributed in Beijing-Tianjin-Hebei, the Yangtze River Delta and the Pearl River Delta, and the central and western provincial capital cities as regional innovation, didn’t have obvious driven effect to neighboring city and had limited radiation effect. Economic base, human capital, education level, FDI scale, institutional factors and infrastructure could promote the development of regional innovation. Especially, economic base and human capital were the most important factors, followed by education level and institutional factors. [ 何舜辉, 杜德斌, 焦美琪, 等. 中国地级以上城市创新能力的时空格局演变及影响因素分析. 地理科学, 2017, 37(7): 1014-1022.]
基于中国287个地级以上城市的专利、论文数据测度中国城市创新能力,揭示2001~2014年中国创新格局的时空演变特征,并分析城市创新能力的影响因素。研究表明:① 中国创新格局刻有明显的经济地带性差异的烙印,呈“东–中–西”逐渐衰减的态势,且随着时间推移,东部的压倒性地位进一步强化。② 基尼系数呈现先增后降的倒U型变化趋势,反映了整体由极化增长向优化均衡发展的空间过程。东部地区基尼系数维持相对稳定;创新能力较弱的中西部地区,城市间的创新能力差异却在不断缩小。③ 高水平和较高水平的创新城市分布具有很强的经济依赖性,广泛分布于发达城市,而中等水平以上的城市呈集聚分布态势,表现出明显的“集群化”特征,与中国主要城市群的分布高度吻合。④ Moran’s I值均为正,并呈不断上升之势,反映了城市间显著的空间相关性。高高集聚区主要分布于京津冀、长三角和珠三角地区,而中部和西部省会城市作为区域性的创新极,对周围城市的创新带动效应并不明显,辐射作用有限。⑤ 经济基础、人力资本、教育水平、FDI规模、制度因素、基础设施6方面因素不同程度地影响城市创新能力的形成。其中经济基础和人力资本因素影响较大,教育水平和制度因素次之,而FDI规模和基础设施水平对区域的创新能力影响相对较小,但仍表现为正向影响。
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[17] |
Based on the theoretical foundation of urban innovation function and the urban system theory in knowledge economy, this paper examines the Chinese urban innovation pattern, rank system and inter-urban innovation relationships by using the methods of the questionnaire, the interviews, factorial analysis, mathematics model and so on. The study indicates that the Chinese innovation urban system consists of five levels of tower innovation urban system structure headed by Shanghai and Beijing. Generally, the eastern coastal cities have the important positions in the Chinese urban innovation city system, the capital cities of each province and the economically developed cities have been the centers of the regional innovation. The Chinese innovation urban system were driven by factors, such as urban innovational scale, the urban scientific research scale and efficiency, the urban innovation potential and urban innovation environment and so on. By using the number of co-authored papers among the cities to measure interurban innovational relationship, the study shows that Beijing has been in the central positions of the knowledge dissemination and knowledge cooperation innovation, much more knowledge dissemination among high level cities have occurred than that among the low level cities as well as between the low level cities and high level cities, provincial capital cities and the regional central cities with strong economy have played a vital role in knowledge dissemination. [ 吕拉昌, 李勇. 基于城市创新职能的中国创新城市空间体系. 地理学报, 2010, 65(2): 177-190.]
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[18] |
With the coming of the era of the knowledge economy, innovation has become one of the most important functions for cities. However, the role of cities in the regional innovation system has rarely been studied. This paper focuses on Beijing's urban innovation function to demonstrate its functional structure and strength and compares with other top Chinese cities in innovation such as Shanghai, Shenzhen, Guangzhou and Tianjin. Using the urban innovation function index and urban innovation specialization index, the paper examines Beijing's urban innovation structure, and innovation intensity compared with those of Shanghai, Shenzhen, Guangzhou and Tianjin. The results show that there exist some differences, but not substantiality, in urban innovation based on publications and granted patents. Beijing's innovation index ranks from high to low based publications from sectors of science-education-culture, transportation and information, finance and real estate, industry and construction, trade and business, and corporate departments. Based on patents granted, Beijing innovation index ranks from high to low in the order of industry, transportation and information sector, science-education-culture sector, construction sector, trade and business sector, corporate departments sector, and finance and real estate sector. Beijing has higher level innovation capabilities in almost all the sectors. Compared with Shanghai, Tianjin, Guangzhou and Shenzhen, Beijing's innovation functions in finance and real estate and construction sectors is weaker than those of Shanghai. Beijing's innovation intensity is the highest in science-education-culture industry, and is the lowest in the trade and business sector. Beijing's innovation intensity is stronger than that of Guangzhou and Shenzhen, but weaker than that of Shanghai and Tianjin based on publications. However, based on patents granted, Beijing's innovation intensity is the highest in industry, while the weakest in trade and business. This paper provides a basic method to study urban innovation functions through urban innovation structure and intensity to enrich the theoretical understanding of national and regional innovation systems. [ 吕拉昌, 何爱, 黄茹. 基于知识产出的北京城市创新职能. 地理研究, 2014, 33(10): 1817-1824.]
随着知识经济的发展,城市创新职能成为研究热点。基于知识产出,参考城市职能的研究方法进行城市创新职能研究,利用城市职能创新指数及城市职能专门化指数,在与中国城市创新能力位居前列的上海、深圳、广州、天津等城市比较的基础上,对北京城市创新职能结构和强度进行分析。研究表明:以论文发表量和专利授权量分别测度的城市创新职能指数和专门化指数表现出一定的差别,但总体上,北京交通信息业、科教文卫业的创新职能指数均较高。北京各行业部门的创新专门化指数均大于平均值,除少数部门外,基本优于上述四城市,但北京的创新强度并不占绝对优势。
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[19] |
[ 张虹. 北京与上海科技创新功能发展对比研究[D]. 上海: 华东师范大学, 2012.]
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[20] |
[ 胡海鹏, 吕拉昌, 黄茹, 等. 基于创新流视角的广东省城市创新体系与职能. 城市发展研究, 2015, 22(6): 71-76.]
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[21] |
Urban functions are an important basis for city identity and the formulation of development strategies. Urban functions have development stage, hierarchical, and regional characteristics. It is urgent to analyze and summarize the research results of different scholars in order to grasp the pattern of urban functional characteristics and formation mechanisms. The results show that: 1) The functional characteristics of different stages of urban development include political and commercial functions in the agrarian society; and manufacturing, trade, and logistics functions in the industrial society. The post industrialization stage is characterized by the service industry, and productive services are the main functions. 2) With regard to the functional characteristics of different city scales, the higher the city level, the more comprehensive the urban functions and the stronger the service functions. 3) At different spatial scales, cities present different functional characteristics. 4) Traditional factors such as natural conditions, population, transportation, government guidance, and location play a fundamental role in the evolution of urban functions, while new factors such as science and technology, globalization, and informatization play an increasingly important role. The evolution of urban functions is also affected by regional division of labor, industrial upgrading, industrial transfer, convergence development, and other mechanisms. 5) In the future, we should include and improve the long-temporal scale and recent research on urban functions, deepen the research on urban function effect, urban function evolution mechanism, and function optimization, and promote the integration with national strategies. In addition to statistical analysis, the research methods should be supplemented by field survey, questionnaire, interview, and other methods. [ 曾春水, 林明水, 湛东升, 等. 城市职能特征及其形成机理研究进展与展望. 地理科学进展, 2021, 40(11): 1956-1969.]
城市职能是城市定位、制定发展战略的重要依据,城市职能具有阶段性、等级性、地域性等特征,论文通过对不同学者的相关研究成果进行归纳总结,以期把握城市职能特征及其形成机理的普遍性规律。结果表明:① 不同城市发展阶段的职能特征表现为城市主导职能不断更替,农业社会阶段主要是政治和商业职能,工业社会阶段主要是制造业、商贸和物流职能,后工业化阶段是服务业职能且以生产性服务业职能为主。② 不同城市规模等级的职能特征表现为城市等级越高,城市职能综合性越强,服务业职能越强。③ 不同空间层面城市职能特征表现为,全球层面,发达国家本土通过城市职能升级,全球产业转移,形成以服务业为主导职能,发展中国家通过承接制造业转移,加速工业化,形成工业职能为主导职能,服务业职能地位不断提升;全国层面,城市职能地带性差异较大,东部工业职能依然突出,西部矿业职能、科技职能、行政职能较明显;城市群层面,世界发育成熟的城市群,在区域中心城市与外围城市之间,以及外围城市之间已经形成紧密的联系和职能分工。中国的许多城市群在中心和外围城市之间也具有明确的职能分工,中心城市以服务业职能为主,但外围城市之间职能分工还不明确。④ 城市职能演变影响因素方面,自然条件、人口、交通、政府引导、区位等传统因素起基础作用,科技、全球化、信息化等新因素作用越来越大。城市职能演变还受区域分工、产业升级、产业转移、趋同发展等机制共同作用。⑤ 未来研究方面,研究时间上应补充完善长时间尺度和近期研究的城市职能研究,研究内容上应加深城市职能效应、城市职能演变机制和职能优化方面的研究,与国家战略进行融合;研究方法上除了统计分析,还可采用调研、问卷、访谈等方法进行补充。
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[22] |
[ 孙莉. 广州与深圳城市创新职能比较研究[D]. 广州: 广州大学, 2013.]
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[23] |
[ 刘德学, 何晖. 珠三角城市群内部职能专业化的影响因素分析. 产经评论, 2015, 6(5): 56-64.]
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[24] |
[ 曾春水, 柯文前, 伍世代, 等. 京津冀城市群城市职能演变机理. 城市发展研究, 2020, 27(9): 72-81.]
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[25] |
[ 杨永春, 赵鹏军. 中国西部河谷型城市职能分类初探. 经济地理, 2000, 20(6): 61-64.]
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[26] |
[ 阎小培, 周素红. 信息技术对城市职能的影响: 兼论信息化下广州城市职能转变与城市发展政策应对. 城市规划, 2003, 27(8): 15-18.]
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[27] |
The Guangdong-Hong Kong-Macao Greater Bay Area has become the most important national strategic zone in China because of its key engine-like role for economic growth as well as being the most advanced global mega-city region in China. The mega-city region development is based on reasonable labor division and cooperation between cities. Cities should focus on their strengths and boost regular competition to promote the coordinated development of the entire region. This study examines the Guangdong-Hong Kong-Macao Greater Bay Area, which includes 19 national economic industries that are divided into 11 city functional types. Based on the data concerning the industry practitioners in each city in 2003 and 2017, this study uses the location quotient index, urban basic service scale measurement method, and Nelson urban functional intensity index to analyze the dynamic evolution of city functions in 2003 and 2017 from the perspective of three elements of urban functions. Further, the influence factors of evolution are analyzed according to the economic, political, and social aspects. First, the urban agglomeration of the Guangdong-Hong Kong-Macao Greater Bay Area is dominated by the manufacturing and production services, with a high specialization level being observed for the manufacturing and service functions, and the evolution of these functions exhibits obvious spatial heterogeneity and industry differences. Second, at the regional level, the basic functions of the Guangdong-Hong Kong-Macao Greater Bay Area include the manufacturing industry, commerce, real estate industry, leasing business services, and software information services, whereas the non-basic functions include transportation, finance, scientific research and technology, education, culture and health, and other services and industrial functions. The functions of the service industry are observed to be significantly enhanced from 2003 to 2017. Third, at the city-scale level, the urban functions of the Greater Bay Area are primarily undertaken by the four major central cities of Hong Kong, Macao, Guangzhou, and Shenzhen, with uneven development being observed between the central and peripheral cities. However, the status of the manufacturing function in central cities declined with the rapid growth of the producer service functions and high specialization levels. In particular, Guangzhou and Shenzhen, which are two core cities in the Pearl River delta, have rapidly improved their functional status and exhibit comparatively increasing advantages with respect to transportation, software information, leasing businesses, and scientific research and technology, challenging the functional status of Hong Kong and Macao. However, the remaining node cities are dominated by the manufacturing functions, and their service functions exhibit a relatively low level of specialization. Foshan, Dongguan, Zhongshan, and Huizhou are cities that dominate with respect to the manufacturing industries, whereas Zhuhai exhibits a relatively good service function development and can build a sub-center of services in the bay area. Jiangmen and Zhaoqing have improved their functions; however, their urban influences and strengths are weak. Fourth, the evolution of urban functions in the Guangdong-Hong Kong-Macao Greater Bay Area is primarily influenced by the urban location conditions, the economic development level, the regional development policies and strategies, the economic globalization, and the most recent round of technological revolutions. In the future, policymakers and planners should focus on achieving a reasonable division of the urban landscape by relying on information technology to promote the development of the integration of manufacturing and services, promoting the transformation and upgradation of industries, and accelerating the regional system innovation and cooperation to achieve high-quality integrated development in the Guangdong-Hong Kong-Macao Greater Bay Area. [ 方远平, 彭婷, 陆莲芯, 等. 粤港澳大湾区城市职能演变特征与影响因素. 热带地理, 2019, 39(5): 647-660.]
以粤港澳大湾区城市群为研究对象,将19个国民经济行业归并为11个城市职能类型,基于各个城市2003和2017年的分行业从业人员数据,运用区位商指数、城市基本服务规模测算法和纳尔逊城市职能分类法,从城市职能的专业化部门、职能强度和职能规模三要素角度,对2003—2017年粤港澳大湾区城市职能演变进行动态分析,并从经济、政治、社会等方面分析了职能演变的影响因素。结果表明:粤港澳大湾区城市职能演变表现出较为明显的空间异质性和行业差异性。从区域整体来看,粤港澳大湾区城市群的基本职能为制造业、商业、房地产业、租赁商务服务以及软件信息服务,2003—2017年服务业职能明显增强。从各城市来看,粤港澳大湾区的城市职能主要由香港、澳门、广州和深圳四大中心城市承担,中心城市与外围城市发展不均衡,表现为中心城市制造业职能地位下降,生产性服务业职能增长较快,专业化水平较高;而其他节点城市则以制造业职能为主导,服务业职能专业化水平较低。粤港澳地区城市职能演变主要受城市区位条件、经济发展水平、区域发展政策与定位、经济全球化及新一轮技术革命的影响。
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[28] |
[ 胡益平, 孟怡伟, 丁志伟, 等. 中原城市群城市体系职能结构的演化与影响因素分析. 河南大学学报(自然科学版), 2021, 51(4): 423-436.]
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[29] |
[ 刘帷韬, 何晖, 林瑶鹏, 等. 城市职能专业化分工形成机制及影响因素: 基于粤港澳大湾区城市群的实证检验. 商业经济研究, 2020, 37(15): 145-149.]
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[30] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[31] |
[ 彼得·F·德鲁克. 知识管理. 杨开峰, 译. 北京: 中国人民大学出版社, 1999: 16-32.]
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[32] |
[ 和金生, 熊德勇, 刘洪伟. 基于知识发酵的知识创新. 科学学与科学技术管理, 2005, 26(2): 54-57, 129.]
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[33] |
[ 晏双生. 知识创造与知识创新的涵义及其关系论. 科学学研究, 2010, 28(8): 1148-1152.]
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[34] |
[ 颜晓峰. 论知识创新的能力. 南京政治学院学报, 2000, 16(4): 31-36.]
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[35] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[36] |
[ 朱美光. 区域知识吸收能力测度研究. 首都经济贸易大学学报, 2007, 9(5): 58-60.]
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[37] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[38] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[39] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[40] |
[ 王斌. 知识网络中知识存量分布演化过程研究: 以河南省巩义市耐火材料知识网络为例. 技术经济与管理研究, 2019(7): 37-42.]
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[41] |
[ 宋春艳. 基于知识创新理论的我国战略性新兴产业集群创新环境构建研究: 以湖南省为例. 科学管理研究, 2013, 31(5): 46-49.]
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[42] |
China is still at an early stage of industrialization and urbanization. At present industry is the main economic activity within most Chinese cities. This paper represents the first attempt to classify all of China’s 295 cities according to industrial functions, using 1984 data. Working within the framework of the economic base theory of urban development, the authors define city industry functions as consisting of the following three elements: (1) Specialized department of the city; (2) functional intensity (degree of specialization), and (3) functional scale (the size of industrial output of the city). The industrial function classification method used here is based on a combination of all three elements.In the present study a number of different techniques were originally applied including principal components analysis, several methods of hierarchical cluster analysis, the Nelson measure and a variety of more traditional methods. On the basis of these preliminary studies it was eventually decided to base the classification on a composite measure consisting of the ward’s Error Method of hierarchical cluster analysis and a supplementary application of the Nelson measure. In this manner the 295 Chinese cities have been grouped into 3 main categories with 19 sub-categories and 54 functional groups.
[ 周一星, R布雷德肖. 中国城市(包括瞎县)的工业职能分类: 理论、方法和结果. 地理学报, 1988, 43(4): 287-298.]
在城市发展的经济基础理论的指导下,作者提出城市工业职能的概念包括城市的专业化部门、职能强度和职能规模三个要素。城市工业职能分类就是按照上述三要素的相似性和差异性对城市进行分类。本研究曾采用主因素分析、聚类分析和纳尔逊的统计分析等多种方法。最后以沃德误差法的聚类分析结果作为分类的基础,稍加修正,并以纳尔逊法分析结果作补充。中国1984年的295个城市被分成三个大类、十九个亚类和五十四个职能组。
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[43] |
[ 张复明, 郭文炯. 城市职能体系的若干理论思考. 经济地理, 1999, 19(3): 19-23.]
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[44] |
[ 樊福卓. 城市职能的概念性分析框架: 以长三角为例. 上海经济研究, 2009, 21(9): 61-71.]
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[45] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[46] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[47] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[48] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[49] |
[ 张晓涛, 易云锋, 王淳. 外商直接投资对城市职能专业化的影响: 基于珠三角城市群的证据. 宏观经济研究, 2021(9): 86-98.]
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[50] |
[ 胡晓辉, 杜德斌. 科技创新城市的功能内涵、评价体系及判定标准. 经济地理, 2011, 31(10): 1625-1629, 1650.]
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[51] |
[ 克里斯塔勒. 德国南部中心地原理. 常正文, 译. 北京: 商务印书馆, 1998.]
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[52] |
[ 雷依凡, 路春燕, 苏颖, 等. 基于多源夜间灯光数据的城市活力与城市扩张耦合关系研究: 以海峡西岸城市群为例. 人文地理, 2022, 37(2): 119-131.]
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[53] |
[ 谢岩. 区域知识创新能力的形成机理及动态评价[D]. 昆明: 云南财经大学, 2015.]
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[54] |
[ 吕可文, 李晓飞, 赵黎晨. 中部六省区域创新能力的评价与分析. 区域经济评论, 2017(2): 99-106.]
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[55] |
[ 韩伯棠, 类骁, 徐德英. 中国区域知识吸收能力测度. 科技与经济, 2013, 26(2): 11-15.]
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[56] |
CBN New First-tier City Research Institute. New graded list of Chinese cities. 2019. https://baike.baidu.com/item/.
[第一财经·新一线城市研究所. 中国城市新分级名单. 2019. https://baike.baidu.com/item/.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[57] |
Institute of Scientific and Technological Information of China.National Innovation City Innovation Capacity Evaluation Report 2020. Beijing: Scientific and Technical Documentation Press, 2020.
[ 中国科学技术信息研究所.国家创新型城市创新能力评价报告2020. 北京: 科学技术文献出版社, 2020.]
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[58] |
[ 伍忠贤, 王建彬. 知识管理:策略与实务. 北京: 中国纺织出版社, 2003.]
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[59] |
OECD. Science, Technology and Industry Scoreboard: Towards a Knowledge-based Economy. Paris: OECD, 2001.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[60] |
[ 赵健. 知识密集型产业技术创新路径演化与决策研究[D]. 哈尔滨: 哈尔滨工程大学, 2013.]
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[61] |
A study of the functional features of China's urban service industries can provide scientific support for the development of the urban service sector to an appropriate scale, industrial make-up and spatial structure, and for exploring different routes for development from city to city. Based on a survey of 287 cities at prefecture level and above in China, this paper uses Nelson methods, flow measurement models, B/N ratio and spatial autocorrelation to conduct quantitative research on the functional scale, specialized units and functional strength of urban service industries in various cities in China. It presents an analysis of the level of labor division, development trends and spatial patterns of different service industries. The research demonstrates that China's exported services are highly concentrated in high-end service centers, and that the functional structures of service centers at various levels differ sharply. Geographically, both the import and export of urban services progressively diminish in scale from eastern to central and western China. Sources of exported urban services show no tendency to concentrate in a certain area, but the import of urban services displays a slight concentration in space, where cities are clustered in the same way as major urban agglomerations of China. In different service industries, the levels of labor divisions vary, but are deepening overall. Finally, it was found that imported service industries are of relatively low concentration, and because all cities demand the development of service industries, it is asserted that tailored development strategies should be taken in individual cities. [ 曾春水, 申玉铭. 中国城市服务业职能特征研究. 地理研究, 2015, 34(9): 1685-1696.]
中国城市服务业职能特征研究可为构建合理的城市服务业职能规模结构、行业结构和空间结构及各城市服务业差异化发展提供科学依据。以中国287个地级及以上城市为单元,应用纳尔逊方法、城市服务业流量测度模型、服务业行业B/N比和空间自相关等方法,定量测算各城市服务业职能规模、专业化部门、职能强度,分析各服务业行业的分工水平、演变趋势和空间格局。研究表明:① 对外服务业输出流量高度集中于高级服务业中心,各等级服务业中心的服务业职能结构差异较大;② 城市服务业输出和输入流量规模在地带性尺度上都呈“东中西”三级递减空间格局。城市服务业输出流量空间没有显著集聚区域,而城市服务业输入流量空间上有弱集聚特征,呈“大分散小集中”格局,集聚城市呈“群”状分布,与重要城市群分布较一致;③ 各服务业行业分工强度存在差异,服务业整体分工在深化,具体行业分工有快速深化、缓慢深化、稳定三种类型;④ 服务业输入流量规模集中性比较低,各城市有普遍服务业需求,应根据需求类型采取不同发展策略。
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[62] |
[ 朱英明, 于念文. 沪宁杭城市密集区城市流研究. 城市规划汇刊, 2002(1): 31-33, 44.]
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[63] |
Lung cancer is one of the most common malignant tumors and the main cause of death related with cancer. The incidence rate and mortality rate of lung cancer in Henan are the highest of the cancers. Therefore, it is of great significance to study the spatial distribution pattern of lung cancer and the effects of environmental factors on it for the prevention and control of lung cancer. Based on the data of lung cancer incidence in Henan from 2016 to 2018, the spatial distribution pattern of lung cancer in the province was studied by using spatial autocorrelation analysis. Using the software Geodetector, we quantified the explanatory power of each factor and its interactions on lung cancer incidence rate. The results showed that lung cancer has obvious characteristics of agglomeration, the high incidence areas are concentrated in the plains and basins of central, eastern and southern Henan. Among the 12 environmental factors selected, PM2.5 concentration, O3 concentration, annual average wind speed, proportion of employees in mining industry and per capita GDP have decisive power, while the per capita GDP and proportion of medical staff have a non-linear enhancement effect on the determination of various factors. The results can provide technical support for research on pathogenesis, prevention and treatment of lung cancer in Henan. [ 魏海涛, 刘岩, 田智慧, 等. 河南省肺癌空间分布格局及环境因素影响. 地理学报, 2022, 77(1): 245-258.]
肺癌是最常见的恶性肿瘤之一,也是主要的肿瘤死因,河南省肺癌发病率和死亡率常年居恶性肿瘤首位,研究肺癌的空间分布格局及其与环境因子的关系对肺癌的相关防控工作意义重大。本文以2016—2018年河南省肺癌发病数据为研究对象,使用空间自相关分析方法研究河南省肺癌的空间分布格局,基于地理探测器量化各个环境因子及其两两交互作用对肺癌发病率的解释力。结果表明:空间上肺癌具有明显的集聚特征,高发区集中分布于豫中、豫东和豫南的平原和盆地地区。在所选的12种环境因子中,PM<sub>2.5</sub>浓度、O<sub>3</sub>浓度、年均风速、采矿业从业人员占比、人均GDP具有更高的决定力,人均GDP和医护人员占比则对多种要素的决定力均具有明显的非线性增强的作用。研究结果可以为河南省肺癌发病机理研究和相关防治工作提供科学支撑。
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[64] |
Spatial stratified heterogeneity is the spatial expression of natural and socio-economic process, which is an important approach for human to recognize nature since Aristotle. Geodetector is a new statistical method to detect spatial stratified heterogeneity and reveal the driving factors behind it. This method with no linear hypothesis has elegant form and definite physical meaning. Here is the basic idea behind Geodetector: assuming that the study area is divided into several subareas. The study area is characterized by spatial stratified heterogeneity if the sum of the variance of subareas is less than the regional total variance; and if the spatial distribution of the two variables tends to be consistent, there is statistical correlation between them. Q-statistic in Geodetector has already been applied in many fields of natural and social sciences which can be used to measure spatial stratified heterogeneity, detect explanatory factors and analyze the interactive relationship between variables. In this paper, the authors will illustrate the principle of Geodetector and summarize the characteristics and applications in order to facilitate the using of Geodetector and help readers to recognize, mine and utilize spatial stratified heterogeneity. [ 王劲峰, 徐成东. 地理探测器: 原理与展望. 地理学报, 2017, 72(1): 116-134.]
空间分异是自然和社会经济过程的空间表现,也是自亚里士多德以来人类认识自然的重要途径。地理探测器是探测空间分异性,以及揭示其背后驱动因子的一种新的统计学方法,此方法无线性假设,具有优雅的形式和明确的物理含义。基本思想是:假设研究区分为若干子区域,如果子区域的方差之和小于区域总方差,则存在空间分异性;如果两变量的空间分布趋于一致,则两者存在统计关联性。地理探测器q统计量,可用以度量空间分异性、探测解释因子、分析变量之间交互关系,已经在自然和社会科学多领域应用。本文阐述地理探测器的原理,并对其特点及应用进行了归纳总结,以利于读者方便灵活地使用地理探测器来认识、挖掘和利用空间分异性。
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[65] |
[ 张树静, 张秀峰. 城市创新环境对产学研合作创新的影响. 中国科技论坛, 2018(4): 25-32.]
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[66] |
[ 叶金福, 李正锋. 产业集群内知识创新能力影响因素的实证分析. 科学学研究, 2006, 24(4): 624-628.]
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[67] |
Urban amenity has an important impact on urban innovation and development, but there is a lack of research on the impact of metropolitan internal amenity and differences on urban innovation ability. Taking Beijing as the research area, this article uses coupling coordination degree model and multiple linear regression models to analyze the relationship between urban amenity and innovation ability. The main conclusions of this article are as follows. 1) The overall level of urban amenity distribution of Beijing gradually decreases with the increase of the distance from the central urban area to suburbs. 2) The northwestern districts in Beijing has better ecological environment amenity than the southeastern districts. However, artificial environment and social atmosphere decrease from the urban center to the surrounding areas and the urban amenity level of each district shows a phenomenon of agglomeration in spatial distribution, with high-high clustering concentrated in Dongcheng District, Xicheng District, Chaoyang District, Haidian District and Fengtai District and forming a “high urban amenity” area in Beijing. 3) Based on the coupling coordination degree model, it is found that except Pinggu District, Miyun District and Yanqing District, other urban areas in Beijing are in the high-level coupling stage. Haidian District, Dongcheng District, Xicheng District, Chaoyang District and Fengtai District have a high degree of coupling and coordination of innovation ability and amenity development, but there is also a lag between the development of urban amenity and urban innovation in all districts of Beijing. 4) There is a positive correlation between urban amenity and innovation ability in Beijing, but different urban amenity factors have different effects on innovation ability. Cultural and educational amenity has the greatest impact on urban innovation ability, and traffic amenity and social atmosphere have the second effect on innovation ability. The policy implication of this paper is that Beijing should promote the relative balanced development of artificial amenity level such as culture, education and traffic amenity to improve the coordination of urban amenity to enhance urban innovation ability of each district. [ 吕拉昌, 于英杰, 栾惠. 北京城市舒适性、差异性与创新能力的关系. 地理科学, 2022, 42(1): 115-125.]
城市舒适性对城市创新发展有重要影响,但对大都市区内部舒适性及差异性对城市创新能力的影响研究较少。以北京市为研究区域,利用耦合协调度模型和多元线性回归模型分析城市舒适性与创新能力的关系。研究发现:① 北京市总体舒适性分布特点是以中心城区为核心,随着距中心城区距离增加,城区的舒适性水平逐渐降低。② 北京生态环境舒适性呈现从西北地区向东南地区逐渐递减的特点,而人工环境和社会氛围的舒适性由中心向四周地区递减,各区的舒适性水平在空间分布上呈集聚状态,高-高型聚类集中在东城区、西城区、朝阳区、海淀区及丰台区,形成北京市“高舒适性”区域。③ 结合耦合协调度模型发现北京市除平谷区、密云区和延庆区,其他城区目前均处于高水平耦合阶段,海淀区、东城区、西城区、朝阳区、丰台区的创新能力和舒适性发展耦合协调度较高,但北京市各区也存在舒适性与城市创新之间发展相对滞后问题。④ 北京城市舒适性与创新能力存在正相关关系,但不同舒适性要素对创新能力的作用不同,文化教育条件对城市创新能力的影响强度最大,交通便利性和社会氛围对创新能力的作用次之。政策建议是要推进文化教育、交通条件等人工舒适性水平的相对均衡发展,提高各区的城市舒适性,以城市舒适性推动创新能力的提升。
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[68] |
[ 郭鑫鑫. 人才创新环境评价指标体系研究: 基于北京市朝阳区的实证研究[D]. 北京: 首都经济贸易大学, 2015. ]
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[69] |
[ 刘妍, 马晓英, 刘坚, 等. 文化理解与传承素养: 21世纪核心素养5C模型之一. 华东师范大学学报(教育科学版), 2020, 38(2): 29-44.]
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[70] |
[ 刘佳, 蔡盼心, 王方方. 粤港澳大湾区城市群知识创新合作网络结构演化及影响因素研究. 技术经济, 2020, 39(5): 68-78.]
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |