Skip to main content
Log in

A review of research on central crack in continuous casting strand

  • Review
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

Central crack is a common quality defect in continuous casting strand, which is difficult to fully weld in the rolling and forging processes, and has become a key technical problem that restricts the stable production of high-end alloy rod/forging/pipe. In recent years, the central crack control has been one of the main focuses in high quality steel research. In order to fully understand the central crack, the research status of central crack characteristics, formation mechanism, influencing factors, and control methods in the world was reviewed. The deficiencies in the research of the central crack and the key research directions in the future were pointed out, which will provide references for other scholars in this field of research. It is found that alloying elements segregation during solidification and inclusions precipitated at grain boundaries are the main reasons for the central crack formation, while the unreasonable application of production processes can also induce the initiation of central crack. The optimization of alloying element composition and production process is helpful to reduce the initiation of central cracks. In addition, the quantitative characterization mechanism based on steel grades, temperature, stress, and other factors induced central crack should be established in the further study, forming a systematic quantitative determination criterion and control strategy for coupling the composition, process and thermal/mechanical characteristic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Z.Q. Han, W.X. Yuan, C.J. Han, K.K. Cai, Continuous Casting 7 (1999) No. 5, 22–24+30.

  2. G. Poltarak, S. Ferro, C. Cicutti, Steel Res. Int. 88 (2017) 1600223.

    Article  Google Scholar 

  3. J.K. Brimacombe, K. Sorimachi, Metall. Trans. B 8 (1977) 489–505.

    Article  Google Scholar 

  4. B.G. Thomas, I.V. Samarasekera, J.K. Brimacombe, Metall. Trans. B 19 (1988) 289–301.

    Article  Google Scholar 

  5. J.K. Brimacombe, E.B. Hawbolt, F. Weinberg, Can. Metall. Quart. 19 (2013) 215–227.

    Article  Google Scholar 

  6. G.Y. Li, Shandong Metallurgy 36 (2014) No. 2, 40–43.

    Google Scholar 

  7. A. Yamanaka, K. Nakajima, K. Yasumoto, H. Kawashima, K. Nakai, Rev. Met. Paris. 22 (1992) 508–512.

    Google Scholar 

  8. K.H. Kim, T.J. Yeo, K.H. Oh, D.N. Lee, ISIJ Int. 36 (1996) 284–289.

    Article  Google Scholar 

  9. A. Yamanaka, K. Nakajima, K. Okamura, Ironmak. Steelmak. 22 (1995) 508–512.

    Google Scholar 

  10. Y.M. Won, K.H. Kim, T.J. Yeo, K.H. Oh, ISIJ Int. 38 (2007) 1093–1099.

    Article  Google Scholar 

  11. Y.M. Won, T.J. Yeo, D.J. Seol, K.H. Oh, Metall. Mater. Trans. B 31 (2000) 779–794.

    Article  Google Scholar 

  12. X.N. Meng, R.G. Lin, J. Yang, X.J. Zuo, M.Y. Zhu, J. Iron Steel Res. Int. 22 (2015) 1085–1090.

    Article  Google Scholar 

  13. M.J. Long, Z.H. Dong, D.F. Chen, Q. Liao, Y.G. Ma, Int. J. Mater. Prod. Technol. 47 (2013) 216–236.

    Article  Google Scholar 

  14. X.Z. Gao, S.F. Yang, J.S. Li, Mater. Des. 110 (2016) 284–295.

    Article  Google Scholar 

  15. B. Wang, J.M. Zhang, C. Xiao, S.X. Wang, W. Song, High Temp. Mater. Process. 35 (2016) 269–274.

    Article  Google Scholar 

  16. M.Y. Feng, B. Wang, L.G. Sun, M. Lei, G.J. Huo, Material Sciences 9 (2019) 54–61.

    Google Scholar 

  17. A. Kusano, H. Misumi, H. Chiba, S. Harada, Tetsu-to-Hagané 84 (1998) 43–48.

    Article  Google Scholar 

  18. R.S. Chu, Z.J. Li, Y. Fan, J.G. Liu, C.W. Ma, X.H. Wang, Heliyon 5 (2019) e01329.

    Article  Google Scholar 

  19. X.G. Yang, L.F. Zhang, C.B. Lai, S.S. Li, M. Li, Z.H. Deng, Steel Res. Int. 89 (2018) 1700480.

    Article  Google Scholar 

  20. Y. Yu, X.C. Luo, H.Y. Zhang, Q.X. Zhang, Appl. Therm. Eng. 160 (2019) 113988.

    Article  Google Scholar 

  21. C.Y. Luo, Hebei Metallurgy 58 (2016) No. 1, 48–51.

    Google Scholar 

  22. Y.Y. Yuan, J.M. Zhang, C. Xiao, Z.F. Hu, S.D. Chen, J. Univ. Sci. Technol. Beijing 34 (2012) 892–897.

    Google Scholar 

  23. H.H. An, Y.P. Bao, M. Wang, Q. Yang, Y.Y. Dang, Ironmak. Steelmak. 47 (2020) 1063–1077.

    Article  Google Scholar 

  24. L. Chen, B. Song, T.M. Chen, X. Chen, W.Z. Yang, Iron and Steel 53 (2018) No. 8, 49–54.

    Google Scholar 

  25. C.H. Wu, C. Ji, M.Y. Zhu, J. Mater. Process. Technol. 271 (2019) 651–659.

    Article  Google Scholar 

  26. Y.S. Han, X.Y. Wang, J.S. Zhang, F.Z. Zeng, J. Chen, M. Guan, Q. Liu, Metals 9 (2019) 543.

    Article  Google Scholar 

  27. G.L. Li, C. Ji, M.Y. Zhu, Metall. Mater. Trans. B 52 (2021) 1164–1178.

    Article  Google Scholar 

  28. J. Zeng, W.Q. Chen, H.G. Zheng, Ironmak. Steelmak. 44 (2017) 676–684.

    Article  Google Scholar 

  29. Q. Zeng, C. Xiao, J.L. Li, Metals 11 (2021) 382.

    Article  Google Scholar 

  30. W.T. Sun, Technology study on continuous casting alloyed steel of round billet, Northeastern University, Shenyang, China, 2005.

  31. Y.F. Zou, Y.F. Mi, B.J. Hao, D.M. Li, Q.F. Meng, Science and Technology of Baotou Steel 45 (2019) No. 4, 34–38+51.

  32. G. Engstrom, H. Fredriksson, B. Rogberg, Scand. J. Metall. 12 (1983) 3–12.

    Google Scholar 

  33. C.M. Raihle, H. Fredriksson, Metall. Mater. Trans. B 25 (1994) 123–133.

    Article  Google Scholar 

  34. T.S. Cong, L.S. Tian, Y. Yang, G.B. Zhang, Physics Examination and Testing 31 (2013) No. 4, 53–55.

    Google Scholar 

  35. Y.L. Leng, Continuous Casting 29 (2022) No. 2, 77–82.

    Google Scholar 

  36. Z.G. Qin, Y.D. Jiang, Research on Iron and Steel 31 (2003) No. 4, 8–10.

    Google Scholar 

  37. J. Wei, Z.Z. Liu, K.K. Cai, H.Q. Liu, Steelmaking 16 (2000) No. 3, 46–51.

    Google Scholar 

  38. H.W. Chu, J.J. Liu, J.W. Jin, H.J. Wu, J.H. Ye, Y.P. Bao, Steelmaking 27 (2011) No. 3, 60–63.

    Google Scholar 

  39. H. Sun, L. Li, Ironmak. Steelmak. 42 (2015) 683–688.

    Article  Google Scholar 

  40. R. Wang, Y.P. Bao, Y.H. Li, H.H. An, Int. J. Miner. Metall. Mater. 23 (2016) 1150–1156.

    Article  Google Scholar 

  41. W. Rauter, J. Reiter, K. Srienc, W. Brandl, M. Erker, K. Huemer, A. Mair, BHM Berg-und Hüttenmännische Monatshefte 159 (2014) 454–460.

    Article  Google Scholar 

  42. B. Rogberg, E. Lina, ISIJ Int. 58 (2018) 478–487.

    Article  Google Scholar 

  43. Y.M. Won, K.H. Kim, T.J. Yeo, K.H. Oh, ISIJ Int. 38 (1998) 1093–1099.

    Article  Google Scholar 

  44. C.H. Yu, M. Suzuki, H. Shibata, T. Emi, ISIJ Int. 36 (1996) S159–S162.

    Article  Google Scholar 

  45. Y.M. Won, H.N. Han, T.J. Yeo, K.H. Oh, ISIJ Int. 40 (2000) 129–136.

    Article  Google Scholar 

  46. F. Diao, J.G. Liang, G.F. Zhao, X.J. Fang, C.J. Mao, Engineering and Technological Research 20 (2014) No. 2, 6–9.

    Google Scholar 

  47. L.D. Xing, Study on formation mechanism and control of surface micro-cracks in sulfur-containing bloom, University of Science and Technology Beijing, Beijing, China, 2022.

  48. X.C. Liu, G.Y. Zhao, K.K. Cai, M.N. He, L.Y. Zeng, Z.M. Zhang, W.T. Liao, Effect of carbon content in steel on longitudinal crack of continuous casting slab, Metallurgical Research Center, Beijing, China, 2005.

  49. K. Dou, J.S. Qing, L. Wang, X.F. Zhang, B. Wang, Q. Liu, H.B. Dong, Acta Metall. Sin. 50 (2014) 1505–1512.

    Google Scholar 

  50. S.S. Li, L.F. Zhang, X.G. Yang, M. Li, Steelmaking 32 (2016) No. 3, 67–72.

    Google Scholar 

  51. S. Saleem, M. Vynnycky, H. Fredriksson, Metall. Mater. Trans. B 48 (2017) 1625–1635.

    Article  Google Scholar 

  52. G.F. Zhao, B. Wu, C.Q. Ma, Production process optimization of ϕ350 mm round billet, The Chinese Society for Metals, Hefei, China, 2013.

  53. J. Liu, G.H. Wen, P. Tang, Metall. Mater. Trans. B 48 (2017) 3074–3082.

    Article  Google Scholar 

  54. B. Krebs, L. Germain, A. Hazotte, M. Gouné, J. Mater. Sci. 46 (2011) 7026–7038.

    Article  Google Scholar 

  55. H. Fujii, T. Ohashi, M. Oda, R. Arima, T. Hiromoto, Tetsu-to-Hagane 67 (1981) 1172–1179.

    Article  Google Scholar 

  56. B.G. Thomas, J.K. Brimacombe, I.V. Samarasekera, ISS Trans. 7 (1986) 7–20.

    Google Scholar 

  57. K. Kim, H.N. Han, T. Yeo, Y. Lee, D.N. Lee, Ironmak. Steelmak. 24 (1997) 249–256.

    Google Scholar 

  58. Z.Z. Cai, M.Y. Zhu, Foundry Technology 30 (2009) 1396–1401.

    Google Scholar 

  59. Z.Q. Han, K.K. Cai, B.C. Liu, ISIJ Int. 41 (2001) 1473–1480.

  60. Y. Ito, N. Masumitsu, K. Matsubara, Trans. Iron Steel Ins. Jpn. 21 (1981) 477–484.

    Article  Google Scholar 

  61. D. Lu, W.F. Li, Y. Ren, L.F. Zhang, J. Iron Steel Res. 32 (2020) 1021–1028.

    Google Scholar 

  62. W.J. Cai, J. Yang, Iron and Steel 56 (2021) No. 7, 13–24.

    Google Scholar 

  63. Y.F. Wang, Iron and Steel 41 (2006) No. 7, 25–28.

    Google Scholar 

  64. Metallurgical newspaper, Continuous casting steel 500 questions, Metallurgical Industry Press, Shanxi, China, 1994.

  65. G.A. de Toledo, O. Campo, E. Lainez, Steel Res. 64 (1993) 292–299.

    Article  Google Scholar 

  66. C.C. Li, Analysis on crack in continuous casting slab of high strength automobile sheet, Northeastern University, Shenyang, China, 2013.

  67. A.M. Guo, S.R. Li, J. Guo, P.H. Li, Q.F. Ding, K.M. Wu, X.L. He, Mater. Charact. 59 (2006) 134–139.

    Article  Google Scholar 

  68. J.X. Zhou, T.H. Xi, Z.X. Yuan, Journal of Wuhan University of Science and Technology 32 (2006) No. 1, 25–28.

    Article  Google Scholar 

  69. C. Wang, R.D.K. Misra, M.H. Shi, P.Y. Zhang, Z.D. Wang, F.X. Zhu, G.D. Wang, Mater. Sci. Eng. A 594 (2014) 218–228.

    Article  Google Scholar 

  70. S.Y. Huang, J. Yang, G.B. Li, W. Kang, X.W. Liao, Y. Tian, Steelmaking 37 (2021) No. 5, 67–75.

    Google Scholar 

  71. J.H. Park, H. Todoroki, ISIJ Int. 50 (2010) 1333–1346.

    Article  Google Scholar 

  72. Y. Tabatabaei, K.S. Coley, G.A. Irons, S. Sun, Metall. Mater. Trans. 49 (2018) 375–387.

    Article  Google Scholar 

  73. S. Kimura, K. Nakajima, S. Mizoguchi, Metall. Mater. Trans. B 32 (2001) 79–85.

    Article  Google Scholar 

  74. X.R. E, J. Tian, D.Y. Wang, T.P. Qu, L.J. Su, Iron and Steel 52 (2017) No. 11, 27–31.

  75. R.M. Geng, J. Li, C.B. Shi, J. Iron Steel Res. Int. 29 (2022) 1659–1668.

    Article  Google Scholar 

  76. K.D. Walker, R.I. Marshall, Mater. Sci. Technol. 6 (1990) 867–871.

    Article  Google Scholar 

  77. Y. Maehara, T. Nagamichi, Mater. High Temp. 9 (1991) 30–34.

    Article  Google Scholar 

  78. A. Qaban, A. Qaban, B. Mintz, S.E. Kang, S. Naher, Mater. Sci. Technol. 33 (2017) 1645–1656.

    Article  Google Scholar 

  79. D.E.C.G.O. Van, J. Hjelen, in: Proceedings of the International Conference on Solid-Solid Phase Transformations, Japan Insitutete of Metals, Kyoto, Japan, 1999, pp. 1953–1976.

  80. E.E. Hornauer, U. Grafe, U. Plociennik, W. Klos, M. Reifferscheid, M. Luettenberg, IOP Conf. Ser. Mater. Sci. Eng. 529 (2019) 012015.

    Google Scholar 

  81. S.K. Choudhary, S. Ganguly, ISIJ Int. 47 (2007) 1759–1766.

    Article  Google Scholar 

  82. W. Zheng, J.R. Kou, L.J. Li, G. Wang, X. Wan, C.S. Liu, Iron and Steel 57 (2022) No. 8, 94–102.

    Google Scholar 

  83. Y.K. Yang, D.P. Zhan, H. Lei, G.X. Qiu, Y.L. Li, Z.H. Jiang, H.S. Zhang, Metall. Mater. Trans. B 50 (2019) 2536–2546.

    Article  Google Scholar 

  84. F. Mayer, M. Wu, A. Ludwig, Steel Res. Int. 81 (2010) 660–667.

    Article  Google Scholar 

  85. Y. Gan, Modern continuous casting steel practical manual, Metallurgical Industry Press, Xi’an, China, 2010.

  86. H.J. Wu, N. Wei, Y.P. Bao, G.X. Wang, C.P. Xiao, J.J. Liu, Int. J. Miner. Metall. Mater. 18 (2011) 159–164.

    Article  Google Scholar 

  87. B.J.M.R.J. Watzinger, J.K.B.H. Gemot, J. Iron Steel Res. Int. 2 (2012) 884–887.

  88. D.B. Jiang, L.F. Zhang, Y.D. Wang, J. Iron Steel Res. Int. 29 (2022) 124–131.

    Article  Google Scholar 

  89. W.L. Zhang, C.J. Xu, C. Wang, T. Wang, X.B. Zhang, H.J. Wu, Ironmak. Steelmak. 48 (2021) 1220–1225.

    Article  Google Scholar 

  90. X.T. Li, Z.H. Zhang, M. Lv, M. Fang, K.L. Liu, Steel Res. Int. 93 (2022) 2100673.

    Article  Google Scholar 

  91. X. Tong, M.T. Song, Continuous Casting 9 (2009) No. 1, 36–39.

    Google Scholar 

  92. M.H. Bai, Q. Yan, Z.Y. Zheng, J.X. Chen, Iron and Steel 49 (2014) No. 4, 36–41+46.

  93. P. Lan, L. Li, Z.P. Tie, H.Y. Tang, J.Q. Zhang, Metals Mater. Int. 25 (2019) 1603–1615.

    Article  Google Scholar 

  94. K. Furumai, A. Phillion, H. Zurob, ISIJ Int. 59 (2019) 2036–2043.

    Article  Google Scholar 

  95. D.L. Fan, J.S. Pan, Y.M. Xu, China material engineering ceremony Vol.15 material heat treatment engineering, Chemical Industry Press, Beijing, China, 2005.

  96. Z.H. Zhang, B. Jin, J.T. Ju, P.Y. Fu, J.Z. Yang, Z.H. Zhang, H.J. Wang, Shanghai Metals 8 (2006) No. 5, 21–24.

    Google Scholar 

  97. S. Kholmatov, S. Takagi, L. Jonsson, P. Joensson, S. Yokoya, ISIJ Int. 47 (2007) 80–87.

    Article  Google Scholar 

  98. Q. Fang, H.W. Ni, H. Zhang, B. Wang, Z. Lv, Metals 7 (2017) 146.

    Article  Google Scholar 

  99. M.M. Aboutalebi, F. Lapointe, J. D’amours, M. Isac, R.I. Guthrie, Ironmak. Steelmak. 46 (2019) 819–826.

    Article  Google Scholar 

  100. M.M. Aboutalebi, F. Lapointe, J. D’amours, M.M. Isac, R.I. Guthrie, JOM 70 (2018) 2088–2095.

    Article  Google Scholar 

  101. H.T. Bai, P.Y. Ni, M. Ersson, T.A. Zhang, P.G. Jönsson, Ironmak. Steelmak. 46 (2019) 911–920.

    Article  Google Scholar 

  102. Y.G. Li, Y.H. Sun, X.S. Bai, ISIJ Int. 61 (2021) 802–813.

    Article  Google Scholar 

  103. I. Calderón-Ramos, R.D. Morales, R. Servín-Castañeda, A. Pérez-Alvarado, S. García-Hernández, J. de Jesús Barreto, S.A. Arreola-Villa, ISIJ Int. 59 (2019) 76–85.

  104. J. Gonzalez-Trejo, C.A. Real-Ramirez, J.R. Miranda-Tello, R. Gabbasov, I. Carvajal-Mariscal, F. Sanchez-Silva, F. Cervantes-De-La-Torre, Metals 11 (2021) 398.

    Article  Google Scholar 

  105. S. Yokoya, Y. Asako, S. Hara, J. Szekely, ISIJ Int. 34 (1994) 883–888.

    Article  Google Scholar 

  106. S. Yokoya, S. Takagi, M. Iguchi, Y. Asako, R. Westoff, S. Hara, ISIJ Int. 38 (1998) 827–833.

    Article  Google Scholar 

  107. S. Yokoya, S. Takagi, M. Iguchi, K. Marukawa, S. Hara, ISIJ Int. 40 (2000) 578–583.

    Article  Google Scholar 

  108. C.L. Wu, D.W. Li, X.W. Zhu, Q. Wang, Acta Metall. Sin. 55 (2019) 875–884.

    Google Scholar 

  109. C.L. Wu, Q. Wang, D.W. Li, X.W. Zhu, B.G. Jin, J. Mater. Res. Technol. 9 (2020) 5630–5639.

    Article  Google Scholar 

  110. H.B. Sun, J.Q. Zhang, ISIJ Int. 51 (2011) 1657–1663.

    Article  Google Scholar 

  111. H.B. Sun, J.Q. Zhang, Metall. Mater. Trans. B 45 (2014) 936–946.

  112. H. Sun, L. Li. Ironmak. Steelmak. 43 (2016) 228–233.

    Article  Google Scholar 

  113. P. Lin, Y. Jin, F. Yang, Z.Y. Liu, Metals 10 (2020) 691.

    Article  Google Scholar 

Download references

Acknowledgements

The present work was financially supported by the National Natural Science Foundation of China (No. 52074207) and the Shaanxi Natural Science Basic Research Program (No. 2023-JC-QN-0376).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-ming Li.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Yk., Zhu, Jy., Wang, Wa. et al. A review of research on central crack in continuous casting strand. J. Iron Steel Res. Int. 30, 1073–1089 (2023). https://doi.org/10.1007/s42243-023-00923-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-023-00923-7

Keywords

Navigation