Skip to main content
Log in

Tandem catalysis for enhanced CO oxidation over the Bi–Au–SiO2 interface

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

Bimetallic catalysts typically exploit unique synergetic effects between two metal species to achieve their catalytic effect. Understanding the mechanism of CO oxidation using hybrid heterogeneous catalysts is important for effective catalyst design and environmental protection. Herein, we report a Bi–Au/SiO2 tandem bimetallic catalyst for the oxidation of CO over the Au/SiO2 surface, which was monitored using near-ambient-pressure X-ray photoelectron spectroscopy. The Au-decorated SiO2 catalyst exhibited scarce activity in the CO oxidation reaction; however, the introduction of Bi to the Au/SiO2 system promoted the catalytic activity. The mechanism is thought to involve the dissociation O2 molecules in the presence of Bi, which results in spillover of the O species to adjacent Au atoms, thereby forming Auδ+. Further CO adsorption, followed by thermal treatment, facilitated the oxidation of CO at the Au–Bi interface, resulting in a reversible reversion to the neutral Au valence state. Our work provides insight into the mechanism of CO oxidation on tandem surfaces and will facilitate the rational design of other Au-based catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The data that support the findings of this study are openly available in Science Data Bank at https://www.doi.org/10.57760/sciencedb.08938 and https://cstr.cn/31253.11.sciencedb.08938.

References

  1. C. Wu, C. Liu, D. Su et al., Bimetallic synergy in cobalt–palladium nanocatalysts for CO oxidation. Nat. Catal. 2, 78–85 (2019). https://doi.org/10.1038/s41929-018-0190-6

    Article  Google Scholar 

  2. D. Kim, J. Resasco, Y. Yu et al., Synergistic geometric and electronic effects for electrochemical reduction of carbon dioxide using gold–copper bimetallic nanoparticles. Nat. Commun. 5, 4948 (2014). https://doi.org/10.1038/ncomms5948(2014)

    Article  ADS  Google Scholar 

  3. J.L. Snider, V. Streibel, M.A. Hubert et al., Revealing the synergy between oxide and alloy phases on the performance of bimetallic In-Pd catalysts for CO2 hydrogenation to methanol. ACS Catal. 9, 3399–3412 (2019). https://doi.org/10.1021/acscatal.8b04848

    Article  Google Scholar 

  4. M. Khanuja, B.R. Mehta, S.M. Shivaprasad, Geometric and electronic changes during interface alloy formation in Cu/Pd bimetal layers. Thin Solid Films 516, 5435–5439 (2008). https://doi.org/10.1016/j.tsf.2007.07.117

    Article  ADS  Google Scholar 

  5. J.A. Rodriguez, D.W. Goodman, The nature of the metal–metal bond in bimetallic surfaces. Science 257, 897–903 (1992). https://doi.org/10.1126/science.257.5072.897

    Article  ADS  Google Scholar 

  6. H.S. Yu, X.J. Wei, J. Li et al., The XAFS beamline of SSRF. Nucl. Sci. Tech. 26(06), 6–12 (2015). https://doi.org/10.13538/j.1001-8042/nst.26.050102

    Article  Google Scholar 

  7. A.V. Bukhtiyarov, I.P. Prosvirin, A.A. Saraev et al., In situ formation of the active sites in Pd–Au bimetallic nanocatalysts for CO oxidation: NAP (near ambient pressure) XPS and MS study. Faraday Discuss. 208, 255 (2018). https://doi.org/10.1039/c7fd00219j

    Article  ADS  Google Scholar 

  8. M.A. Languille, E. Ehret, H.C. Lee et al., In-situ surface analysis of AuPd(110) under elevated pressure of CO. Catal. Today 260, 39–45 (2016). https://doi.org/10.1016/j.cattod.2015.05.029

    Article  Google Scholar 

  9. L. Delannoy, S. Giorgio, J.G. Mattei et al., Surface segregation of Pd from TiO2-supported AuPd nanoalloys under CO oxidation conditions observed in situ by ETEM and DRIFTS. ChemCatChem 5, 2707–2716 (2013). https://doi.org/10.1002/cctc.201200618

    Article  Google Scholar 

  10. P.S. West, R.L. Johnston, G. Barcaro et al., The effect of CO and H chemisorption on the chemical ordering of bimetallic clusters. J. Phys. Chem. C 114, 19678–19686 (2010). https://doi.org/10.1021/jp108387x

    Article  Google Scholar 

  11. M. Valden, S. Pak, X. Lai, D.W. Goodman, Structure sensitivity of CO oxidation over model Au/TiO2 catalysts. Catal, Lett. 56, 7–10 (1998). https://doi.org/10.1023/A:1019028205985

    Article  Google Scholar 

  12. F. Yang, M.S. Chen, D.W. Goodman, Sintering of Au particles supported on TiO2(110) during CO oxidation. J. Phys. Chem. C 113, 254–260 (2009). https://doi.org/10.1021/jp807865w

    Article  Google Scholar 

  13. W. He, X. Han, H. Jia et al., AuPt alloy nanostructures with tunable composition and enzyme-like activities for colorimetric detection of bisulfide. Sci. Rep. 7, 40103 (2017). https://doi.org/10.1038/srep40103(2017)

    Article  ADS  Google Scholar 

  14. B. Zhu, G. Thrimurthulu, L. Delannoy et al., Evidence of Pd segregation and stabilization at edges of AuPd nano-clusters in the presence of CO: a combined DFT and DRIFTS study. J. Catal. 308, 272–281 (2013). https://doi.org/10.1016/j.jcat.2013.08.022

    Article  Google Scholar 

  15. W. Zhan, J. Wang, H. Wang et al., Crystal structural effect of AuCu alloy nanoparticles on catalytic CO oxidation. J. Am. Chem. Soc. 139, 8846–8854 (2017). https://doi.org/10.1021/jacs.7b01784

    Article  Google Scholar 

  16. X. Wei, C. Xiao, K. Wang, Y. Tu, A nano-TiO2 supported AuAg alloy nanocluster functionalized electrode for sensitizing the electrochemiluminescent analysis. J. Electroanal. Chem. 702, 37–44 (2013). https://doi.org/10.1016/j.jelechem.2013.05.009

    Article  Google Scholar 

  17. Y.H. Lv, Y.H. Zhang, J. Zhang, B. Li, Mössbauer spectroscopy studies on the particle size distribution effect of Fe–B–P amorphous alloy on the microwave absorption properties. Nucl. Sci. Tech. 31, 24 (2020). https://doi.org/10.1007/s41365-020-0734-8

    Article  Google Scholar 

  18. G. Darabdhara, M.R. Das, M.A. Amin et al., Au–Ni alloy nanoparticles supported on reduced graphene oxide as highly efficient electrocatalysts for hydrogen evolution and oxygen reduction reactions. Int. J. Hydrog. 43, 1424–1438 (2018). https://doi.org/10.1016/j.ijhydene.2017.11.048

    Article  Google Scholar 

  19. Q. Ye, J.A. Wang, J.S. Zhao et al., Pt or Pd-doped Au/SnO2 catalysts: high activity for low-temperature CO oxidation. Catal. Lett. 138, 56–61 (2010). https://doi.org/10.1007/s10562-010-0360-x

    Article  Google Scholar 

  20. T. Ward, L. Delannoy, R. Hahn et al., Effects of Pd on catalysis by Au: CO adsorption, CO oxidation, and cyclohexene hydrogenation by supported Au and Pd−Au catalysts. ACS Catal. 3, 2644–2653 (2013). https://doi.org/10.1021/cs400569v

    Article  Google Scholar 

  21. F. Gao, Y.L. Wang, D.W. Goodman, CO oxidation over AuPd(100) from ultrahigh vacuum to near-atmospheric pressures: the critical role of contiguous Pd atoms. J. Am. Chem. Soc. 131, 5734–5735 (2009). https://doi.org/10.1021/ja9008437

    Article  Google Scholar 

  22. F. Gao, Y.L. Wang, D.W. Goodman, CO oxidation over AuPd(100) from ultrahigh vacuum to near-atmospheric pressures: CO adsorption-induced surface segregation and reaction kinetics. J. Phys. Chem. C 113, 14993–15000 (2009). https://doi.org/10.1021/ja9008437

    Article  Google Scholar 

  23. T. Mallat, Z. Bodnar, C. Bronnimann, A. Baiker, Platinum-catalyzed oxidation of alcohols in aqueous solutions. the role of Bi-promotion in suppression of catalyst deactivation. Stud. Surf. Sci. Catal. 88, 385–392 (1994). https://doi.org/10.1016/S0167-2991(08)62764-0

    Article  Google Scholar 

  24. Y. Miao, Z. Yang, X. Liu et al., Self-assembly of BiIII ultrathin layer on Pt surface for non-enzymatic glucose sensing. Electrochim. Acta 111, 621–626 (2013). https://doi.org/10.1016/j.electacta.2013.07.188

    Article  Google Scholar 

  25. X. Ning, L. Zhan, H. Wang et al., Deactivation and regeneration of in situ formed bismuth-promoted platinum catalyst for the selective oxidation of glycerol to dihydroxyacetone. New J. Chem. 42, 18837 (2018). https://doi.org/10.1039/c8nj04513e

    Article  Google Scholar 

  26. M. Wenkin, P. Ruiz, B. Delmon et al., The role of bismuth as promoter in Pd−Bi catalysts for the selective oxidation of glucose to gluconate. J. Mol. Catal. A Chem. 180, 141–159 (2002). https://doi.org/10.1016/S1381-1169(01)00421-6

    Article  Google Scholar 

  27. L. Peng, Y. Wang, Y. Wang et al., Separated growth of Bi–Cu bimetallic electrocatalysts on defective copper foam for highly converting CO2 to formate with alkaline anion-exchange membrane beyond KHCO3 electrolyte. Appl. Catal. B: Environ. 288, 20003 (2021). https://doi.org/10.1016/j.apcatb.2021.120003

    Article  Google Scholar 

  28. L. Li, F. Cai, F. Qi, D.K. Ma, Cu nanowire bridged Bi nanosheet arrays for efficient electrochemical CO2 reduction toward formate. J. Alloys Compd. 841, 155789 (2020). https://doi.org/10.1016/j.jallcom.2020.155789

    Article  Google Scholar 

  29. L. Jia, H. Yang, J. Deng et al., Copper–bismuth bimetallic microspheres for selective electrocatalytic reduction of CO2 to formate. Chin. J. Chem. 37, 497–500 (2019). https://doi.org/10.1002/cjoc.201900010

    Article  Google Scholar 

  30. T. Mallat, A. Baiker, Oxidation of alcohols with molecular oxygen on platinum metal catalysts in aqueous solutions. Catal. Today 19, 247–283 (1994). https://doi.org/10.1016/0920-5861(94)80187-8

    Article  Google Scholar 

  31. Y. Xiao, J. Greeley, A. Varma et al., An experimental and theoretical study of glycerol oxidation to 1,3-Dihydroxyacetone over bimetallic Pt–Bi catalysts. AIChE J. 63, 705–715 (2017). https://doi.org/10.1002/aic.15418

    Article  Google Scholar 

  32. K. Roy, L. Artiglia, Y. Xiao et al., Role of bismuth in the stability of Pt−Bi bimetallic catalyst for methane mediated deoxygenation of guaiacol, an APXPS study. ACS Catal. 9, 3694–3699 (2019). https://doi.org/10.1021/acscatal.8b04699

    Article  Google Scholar 

  33. H. Guo, H. Yin, X. Yan et al., Pt–Bi decorated nanoporous gold for high performance direct glucose fuel cell. Sci. Rep. 6, 39162 (2016). https://doi.org/10.1038/srep39162

    Article  ADS  Google Scholar 

  34. D. Basu, S. Basu, Synthesis, characterization and application of platinum based bi-metallic catalysts for direct glucose alkaline fuel cell. Electrochim. Electrochim. Acta 56, 6106–6113 (2011). https://doi.org/10.1016/j.electacta.2011.04.072

    Article  Google Scholar 

  35. H. Zhang, Z. Liang, C. Huang et al., Enhanced dissociation activation of CO2 on the Bi/Cu(111) interface by the synergistic effect. J. Catal. 410, 1–9 (2022). https://doi.org/10.1016/j.jcat.2022.04.001

    Article  Google Scholar 

  36. B. Nan, Q. Fu, J. Yu et al., Unique structure of active platinum–bismuth site for oxidation of carbon monoxide. Nat. Commun. 12, 3342 (2021). https://doi.org/10.1038/s41467-021-23696-7

    Article  ADS  Google Scholar 

  37. K. Zhou, W. Wang, Z. Zhao et al., Synergistic gold−bismuth catalysis for non-mercury hydrochlorination of acetylene to vinyl chloride monomer. ACS Catal. 4, 3112–3116 (2014). https://doi.org/10.1021/cs500530f

    Article  Google Scholar 

  38. H. Zhang, L. Xie, C.Q. Huang et al., Exploring the CO2 reduction reaction mechanism on Pt/TiO2 with the ambient-pressure X-ray photoelectron spectroscopy. Appl. Surf. Sci. 568, 150933 (2021). https://doi.org/10.1016/j.apsusc.2021.150933

    Article  Google Scholar 

  39. M.D. Strømsheim, J. Knudsen, M.H. Farstad et al., Near ambient pressure XPS investigation of CO oxidation over Pd3Au(100). J. Phys. Chem. C 122, 21484–21492 (2018). https://doi.org/10.1007/s11244-017-0831-z

    Article  Google Scholar 

  40. G. Mills, M.S. Gordon, H. Meitu, Oxygen adsorption on Au clusters and a rough Au(111) surface: the role of surface flatness, electron confinement, excess electrons, and band gap. J. Chem. Phys. 118, 4198–4205 (2003). https://doi.org/10.1063/1.1542879

    Article  ADS  Google Scholar 

  41. A.Y. Klyushin, T.C.R. Rocha, M. Hävecker et al., A near ambient pressure XPS study of Au oxidation. Phys. Chem. Chem. Phys. 16, 7881 (2014). https://doi.org/10.1039/c4cp00308j

    Article  Google Scholar 

  42. J.P. Simonovis, A. Hunt, R.M. Palomino et al., Enhanced stability of Pt–Cu single-atom alloy catalysts: in situ characterization of the Pt/Cu(111) surface in an ambient pressure of CO. J. Am. Chem. Soc. 125, 10437 (2003). https://doi.org/10.1021/acs.jpcc.8b00078

    Article  Google Scholar 

  43. D. Stolcic, M. Fischer, G. Ganteför et al., Direct observation of key reaction intermediates on gold clusters. J. Am. Chem. Soc. 125, 2848 (2003). https://doi.org/10.1021/ja0293406

    Article  Google Scholar 

  44. H. Tang, Y. Su, B. Zhang et al., Classical strong metal-support interactions between gold nanoparticles and titanium dioxide. Sci. Adv. 3, 1700231 (2017). https://doi.org/10.1126/sciadv.1700231

    Article  ADS  Google Scholar 

  45. B. Afsin, M.W. Roberts, Formation of an oxy-chloride overlayer at a Bi(0001) surface. Spectrosc. Lett. 27, 139–146 (1994). https://doi.org/10.1080/00387019408002513

    Article  ADS  Google Scholar 

  46. S. Röhe, K. Frank, A. Schaefer et al., CO oxidation on nanoporous gold: a combined TPD and XPS study of active catalysts. Surf. Sci. 609, 106–112 (2013). https://doi.org/10.1016/j.susc.2012.11.011

    Article  ADS  Google Scholar 

  47. M.D. Strømsheim, J. Knudsen, M.H. Farstad et al., Near ambient pressure XPS investigation of CO oxidation over Pd3Au(100). Top Catal 60, 1439–1448 (2017). https://doi.org/10.1007/s11244-017-0831-z

    Article  Google Scholar 

  48. J.P. Simonovis, A. Hunt, R.M. Palomino et al., Enhanced stability of Pt–Cu single-atom alloy catalysts: in situ characterization of the Pt/Cu(111) surface in an ambient pressure of CO. J. Phys. Chem. C 122, 4488–4495 (2018). https://doi.org/10.1021/acs.jpcc.8b00078

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Huan Zhang, Zhao-Feng Liang, and Lei Xie. The first draft of the manuscript was written by Huan Zhang, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Lei Xie or Fei Song.

Ethics declarations

Conflict of interest

Fei Song is an editorial board member for Nuclear Science and Techniques and was not involved in the editorial review, or the decision to publish this article. All authors declare that there are no competing interests.

Additional information

This work was supported by the National Natural Science Foundation of China (Nos.11874380 and 22002183) and the National Key Research and Development Program of China (No. 2021YFA1600800).

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1182 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Xie, L., Liang, ZF. et al. Tandem catalysis for enhanced CO oxidation over the Bi–Au–SiO2 interface. NUCL SCI TECH 34, 108 (2023). https://doi.org/10.1007/s41365-023-01256-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-023-01256-6

Keywords

Navigation