Skip to main content
Log in

Synthesis and characterization of porous 4VP-based adsorbent for Re adsorption as analogue to 99Tc

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

Technetium (99Tc), a major fission product in nuclear reactors, of high yield, long-half-life and high mobility in the environment must be removed in nuclear fuel reprocessing. Considering rhenium (Re) and Tc are both VIIB elements, Re is a good chemical analogue to 99Tc. Herein, we use Re as a substitution of 99Tc to study adsorption and desorption behavior. Porous 4-vinylpyridine–divinylbenzene-based (4VP–DVB) adsorbent containing tertiary amine groups is synthesized by suspension polymerization and characterized by BET, TGA, SEM and laser particle size analyzer. The adsorbent has high adsorption efficiency toward Re(VII) in 0.1 mol/L nitric acid solution, and the adsorption equilibrium can be achieved in 30 min. The adsorption kinetics of Re(VII) follows pseudo-second-order rate equation, the adsorption isotherm matches well with the Langmuir isotherm, and the adsorption capacity of Re(VII) on 4VP–DVB adsorbent is 352.1 mg/g at 298 K. Thermodynamic study reveals that the adsorption process is exothermic. This adsorbent is of separation convenience when a fixed-bed column is used, compared to the batch adsorption treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. K. Lieser, Technetium in the nuclear fuel cycle, in medicine and in the environment. Radiochim. Acta 63, 5–8 (1993). doi:10.1524/ract.1993.63.special-issue.5

    Article  Google Scholar 

  2. F. Macáŝek, J. Kadrabova, Extraction of pertechnetate anion as a ligand in metal complexes with tributylphosphate. J. Radioanal. Chem. 51, 97–106 (1979). doi:10.1007/BF02519927

    Article  Google Scholar 

  3. G.D. Jarvinen, K.M. Long, G.S. Goff et al., Separation of pertechnetate from uranium in a simulated urex processing solution using anion exchange extraction chromatography. Solvent Extr. Ion Exch. 31, 416–429 (2013). doi:10.1080/07366299.2013.800434

    Article  Google Scholar 

  4. R.S. Masud, Y.Y. Wu, H. Mimura et al., Selective separation of Re(VII) and TC(VII) by xerogel microcapsules enclosing TOA extractant. Procedia Chem. 7, 258–267 (2012). doi:10.1016/j.proche.2012.10.042

    Article  Google Scholar 

  5. I.A. Shkrob, T.W. Marin, D.C. Stepinski et al., Extraction and reductive stripping of pertechnetate from spent nuclear fuel waste streams. Sep. Sci. Technol. 46, 357–368 (2011). doi:10.1080/01496395.2010.527893

    Article  Google Scholar 

  6. T.A. Boitsova, V.A. Babain, A.A. Murzin et al., Precipitation of pertechnetate ion from nitric acid solutions using complexes of copper (II) with heterocyclic N-donor ligands. J Radioanal Nucl Chem. 307, 1519–1527 (2016). doi:10.1007/s10967-015-4300-5

    Article  Google Scholar 

  7. E. Deutsch, K. Libson, J.-L. Vanderheyden et al., The chemistry of rhenium and technetium as related to the use of isotopes of these elements in therapeutic and diagnostic nuclear medicine. Int. J. Radiat. Appl. Instrum. Part B Nucl. Med. Biol. 13, 465–477 (1986). doi:10.1016/0883-2897(86)90027-9

    Article  Google Scholar 

  8. J.G. Darab, P.A. Smith, Chemistry of technetium and rhenium species during low-level radioactive waste vitrification. Chem. Mater. 8, 1004–1021 (1996). doi:10.1021/cm950418+

    Article  Google Scholar 

  9. U. Abram, R. Alberto, Technetium and rhenium: coordination chemistry and nuclear medical applications. J. Braz. Chem. Soc. 17, 1486–1500 (2006). doi:10.1590/S0103-50532006000800004

    Article  Google Scholar 

  10. H. Braband, T.I. Kückmann, U. Abram, Rhenium and technetium complexes with n-heterocyclic carbenes—a review. J. Organomet. Chem. 690, 5421–5429 (2005). doi:10.1016/j.jorganchem.2005.07.014

    Article  Google Scholar 

  11. E. Kim, M.F. Benedetti, J. Boulègue, Removal of dissolved rhenium by sorption onto organic polymers: study of rhenium as an analogue of radioactive technetium. Water Res. 38, 448–454 (2004). doi:10.1016/j.watres.2003.09.033

    Article  Google Scholar 

  12. W.-C. Hsu, C.-N. Cheng, T.-W. Lee et al., Cytotoxic effects of pegylated anti-EGFR immunoliposomes combined with doxorubicin and rhenium-188 against cancer cells. Anticancer Res. 35, 4777–4788 (2015)

    Google Scholar 

  13. E. Fernandez, G. Rodriguez, S. Hostachy et al., A rhenium tris-carbonyl derivative as a model molecule for incorporation into phospholipid assemblies for skin applications. Colloids Surf. B Biointerfaces 131, 102–107 (2015). doi:10.1016/j.colsurfb.2015.04.045

    Article  Google Scholar 

  14. P. Collery, A. Mohsen, A. Kermagoret et al., Antitumor activity of a rhenium (I)-diselenoether complex in experimental models of human breast cancer. Invest. New Drug. 33, 848–860 (2015). doi:10.1007/s10637-015-0265-z

    Article  Google Scholar 

  15. G. Balakrishnan, T. Rajendran, K.S. Murugan et al., Interaction of rhenium(I) complex carrying long alkyl chain with calf thymus DNA: cytotoxic and cell imaging studies. Inorg. Chim. Acta 434, 51–59 (2015). doi:10.1016/j.ica.2015.04.036

    Article  Google Scholar 

  16. S. Verma, S. Kumar, E. Shawat et al., Carbon nanofibers decorated with oxo-rhenium complexes: highly efficient heterogeneous catalyst for oxidation of amines with hydrogen peroxide. J. Mol. Catal. A Chem. 402, 46–52 (2015). doi:10.1016/j.molcata.2015.03.007

    Article  Google Scholar 

  17. Y. Xiong, Solubility and speciation of rhenium in anoxic environments at ambient temperature and applications to the black sea. Deep Sea Res. Part I 50, 681–690 (2003). doi:10.1016/S0967-0637(03)00037-2

    Article  Google Scholar 

  18. B. Gu, G.M. Brown, P.V. Bonnesen et al., Development of novel bifunctional anion-exchange resins with improved selectivity for pertechnetate sorption from contaminated groundwater. Environ. Sci. Technol. 34, 1075–1080 (2000). doi:10.1021/es990951g

    Article  Google Scholar 

  19. K. Pillay, A review of the radiation stability of ion exchange materials. J. Radioanal. Nucl. Chem. 102, 247–268 (1986). doi:10.1007/BF02037966

    Article  Google Scholar 

  20. H.R. Obermoller, D.A. White, S. Lagos, Resin adsorption of anionic chloride complexes for uranium isotope chemical exchange reactions. Hydrometallurgy 27, 63–74 (1991). doi:10.1016/0304-386X(91)90078-Z

    Article  Google Scholar 

  21. B. Moyer, P. Bonnesen, Physical Factors in Anion Separations (Wiley-VCH, New York, 1997)

    Google Scholar 

  22. T. Suzuki, Y. Fujii, W. Yan et al., Adsorption behavior of vii group elements on tertiary pyridine resin in hydrochloric acid solution. J. Radioanal. Nucl. Chem. 282, 641–644 (2009). doi:10.1007/s10967-009-0165-9

    Article  Google Scholar 

  23. S. Zakhar’yan, E. Gedgagov, Anion-exchange separation of rhenium and selenium in schemes for obtaining ammonium perrhenate. Theor. Found. Chem. Eng. 47, 637–643 (2013). doi:10.1134/S0040579513050138

    Article  Google Scholar 

  24. Y.-S. Ho, G. McKay, The kinetics of sorption of divalent metal ions onto sphagnum moss peat. Water Res. 34, 735–742 (2000). doi:10.1016/S0043-1354(99)00232-8

    Article  Google Scholar 

  25. W. Rudzinski, W. Plazinski, Kinetics of solute adsorption at solid/solution interfaces: a theoretical development of the empirical pseudo-first and pseudo-second order kinetic rate equations, based on applying the statistical rate theory of interfacial transport. J. Phys. Chem. B 110, 16514–16525 (2006). doi:10.1021/jp061779n

    Article  Google Scholar 

  26. M. Hanafiah, H. Zakaria, W.W. Ngah, Preparation, characterization, and adsorption behavior of Cu (II) ions onto alkali-treated weed (imperata cylindrica) leaf powder. Water Air Soil Pollut. 201, 43–53 (2009). doi:10.1007/s11270-008-9926-2

    Article  Google Scholar 

  27. T.M. Ting, M.M. Nasef, K. Hashim, Evaluation of boron adsorption on new radiation grafted fibrous adsorbent containing n-methyl-d-glucamine. J. Chem. Technol. Biotechnol. (2015). doi:10.1002/jctb.4793

    Google Scholar 

  28. V.K. Gupta, A. Rastogi, A. Nayak, Adsorption studies on the removal of hexavalent chromium from aqueous solution using a low cost fertilizer industry waste material. J. Colloid Interface Sci. 342, 135–141 (2010). doi:10.1016/j.jcis.2009.09.065

    Article  Google Scholar 

  29. S. Karaca, A. Gürses, M. Ejder et al., Adsorptive removal of phosphate from aqueous solutions using raw and calcinated dolomite. J. Hazard. Mater. 128, 273–279 (2006). doi:10.1016/j.jhazmat.2005.08.003

    Article  Google Scholar 

  30. T. Anirudhan, P. Radhakrishnan, Improved performance of a biomaterial-based cation exchanger for the adsorption of Uranium (VI) from water and nuclear industry wastewater. J. Environ. Radioact. 100, 250–257 (2009). doi:10.1016/j.jenvrad.2008.12.006

    Article  Google Scholar 

  31. G. Crini, H.N. Peindy, F. Gimbert et al., Removal of CI basic green 4 (malachite green) from aqueous solutions by adsorption using cyclodextrin-based adsorbent: kinetic and equilibrium studies. Sep. Purif. Technol. 53, 97–110 (2007). doi:10.1016/j.seppur.2006.06.018

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-Hua Zu.

Additional information

This work was supported by the National Natural Science Foundation of China (Nos. 91226111 and 11675103).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, PY., Zu, JH. & Wei, YZ. Synthesis and characterization of porous 4VP-based adsorbent for Re adsorption as analogue to 99Tc. NUCL SCI TECH 28, 30 (2017). https://doi.org/10.1007/s41365-017-0181-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-017-0181-3

Keywords

Navigation