Skip to main content
Log in

Phonon thermal transport properties of XB2 (X = Mg and Al) compounds: considering quantum confinement and electron–phonon interaction

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

XB2 (X = Mg and Al) compounds have drawn great attention for their superior electronic characteristics and potential applications in semiconductors and superconductors. The study of phonon thermal transport properties of XB2 is significant to their application and mechanism behind research. In this work, the phonon thermal transport properties of three-dimensional (3D) and two-dimensional (2D) XB2 were studied by first-principles calculations. After considering the electron–phonon interaction (EPI), the thermal conductivities (TCs) of 3D MgB2 and 3D AlB2 decrease by 29% and 16% which is consistent with experimental values. Moreover, the underlying mechanisms of reduction on lattice TCs are the decrease in phonon lifetime and heat capacity when considering quantum confinement effect. More importantly, we are surprised to find that there is a correlation between quantum confinement effect and EPI. The quantum confinement will change the phonon and electron characteristics which has an impact on EPI. Overall, our work is expected to provide insights into the phonon thermal transport properties of XB2 compounds considering EPI and quantum confinement effect.

Graphical abstract

摘要

XB2(X = Mg 和Al)化合物因其优异的电子特性和在半导体和超导体中的潜在应用而备 受关注。对XB2 声子热输运性质的研究对其应用和机理研究具有重要意义。本工作通过第一性原理计算研究了三 维和二维XB2的声子热输运特性。考虑电声相互作用后,三维MgB2和三维AlB2的热导率分别降低了29%和16%,与实验值一致。此外,在考虑量子限域效应时,声子热导率降低的潜在机制是声子寿命和热容的降低。更重要的 是,我们发现量子限域效应与电声相互作用之间存在相关性。量子限域效应将改变声子和电子特性,这将对电声 相互作用有影响。总体而言,我们的工作有望为考虑电声相互作用和量子限域效应的XB2 化合物的声子热输运特 性提供深入见解。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Gajda D, Zaleski AJ, Morawski AJ, Małecka M, Nenkov K, Rindfleisch M, Hossain MS, Czujko T. Effect of heat treatments under high isostatic pressure on the transport critical current density at 4.2 K and 20 K in doped and undoped MgB2 wires. Materials. 2021;14:5152. https://doi.org/10.3390/ma14185152.

    Article  CAS  Google Scholar 

  2. Prikhna T, Eisterer M, Rindfleisch M, Ponomaryov SS, Tomsic M, Romaka VV, Moshchil V, Kozyrev A, Karpets M, Shaternik A. Manufacturing, structure, properties of MgB2-based materials. J Supercond Nov Magn. 2019;32:3115. https://doi.org/10.1007/s10948-019-5062-z.

    Article  CAS  Google Scholar 

  3. Vinod K, Kumar RGA, Syamaprasad U. Prospects for MgB2 superconductors for magnet application. Supercond Sci Technol. 2007;20:R1.

    Article  CAS  Google Scholar 

  4. Tomsic M, Rindfleisch M, Yue J, McFadden K, Phillips J, Sumption MD, Bhatia M, Bohnenstiehl S, Collings EW. Overview of MgB2 superconductor applications. Int J Appl Ceram Technol. 2007;4:250. https://doi.org/10.1111/j.1744.2007.02138.x.

    Article  CAS  Google Scholar 

  5. Kim YG, Kim JM, Kim KH, Noh HS, Kim HS, Hwang DY, Lee HG. Enhancement of charging and discharging rates for partially insulated MgB2 magnets composed of Cr-coated MgB2 superconducting wires. Results Phys. 2019;15:102754. https://doi.org/10.1016/j.rinp.2019.102754.

    Article  Google Scholar 

  6. Patel D, Matsumoto A, Kumakura H, Maeda M, Kim SH, Al Hossain MS, Choi S, Kim JH. MgB2 for MRI applications: dual sintering induced performance variations in in situ and IMD processed MgB2 conductors. J Mater Chem C. 2020;8:2507. https://doi.org/10.1039/C9TC06114B.

    Article  CAS  Google Scholar 

  7. Pan WY, Bao QW, Mao YJ, Liu BH, Li ZP. Low-temperature synthesis of nanosized metal borides through reaction of lithium borohydride with metal hydroxides or oxides. J Alloys Compd. 2015;651:666. https://doi.org/10.1016/j.jallcom.2015.08.149.

    Article  CAS  Google Scholar 

  8. Jiang C, Ma Y, Zhao F, Wei L, Zhang H, Pei C. Synthesis and characterisation of AlB2 nanopowders by solid state reaction. Micro Nano Lett. 2014;9:132. https://doi.org/10.1049/mnl.2013.0665.

    Article  CAS  Google Scholar 

  9. Sun X, Liu X, Yin J, Yu J, Li Y, Hang Y, Zhou X, Yu M, Li J, Tai G, Guo W. Two-dimensional boron crystals: structural stability, tunable properties, fabrications and applications. Adv Funct Mater. 2017;27:1603300. https://doi.org/10.1002/adfm.201603300.

    Article  CAS  Google Scholar 

  10. Humood M, Meyer JL, Verkhoturov SV, Ozkan T, Eller M, Schweikert EA, Economy J, Polycarpou AA. 2D AlB2 flakes for epitaxial thin film growth. J Mater Res. 2018;33:2318. https://doi.org/10.1557/jmr.2018.173.

    Article  CAS  Google Scholar 

  11. Bekaert J, Aperis A, Partoens B, Oppeneer PM, Milošević MV. Evolution of multigap superconductivity in the atomically thin limit: strain-enhanced three-gap superconductivity in monolayer MgB2. Phys Rev B. 2017;96:094510. https://doi.org/10.1103/PhysRevB.96.094510.

    Article  Google Scholar 

  12. Zhao Y, Lian C, Zeng S, Dai Z, Meng S, Ni J. Two-gap and three-gap superconductivity in AlB2-based films. Phys Rev B. 2019;100:094516. https://doi.org/10.1103/PhysRevB.103.094516.

    Article  CAS  Google Scholar 

  13. Mounet N, Gibertini M, Schwaller P, Campi D, Merkys A, Marrazzo A, Sohier T, Castelli IE, Cepellotti A, Pizzi G, Marzari N. Two-dimensional materials from high-throughput computational exfoliation of experimentally known compounds. Nat Nanotechnol. 2018;13:246. https://doi.org/10.1038/s41565-017-0035-5.

    Article  CAS  Google Scholar 

  14. Nagamatsu J, Nakagawa N, Muranaka T, Zenitani Y, Akimitsu J. Superconductivity at 39 K in magnesium diboride. Nature. 2001;410:63. https://doi.org/10.1038/35065039.

    Article  CAS  Google Scholar 

  15. Cheng C, Duan MY, Wang Z, Zhou XL. AlB2 and MgB2: a comparative study of their electronic, phonon and superconductivity properties via first principles. Philos Mag. 2020;100:2275. https://doi.org/10.1080/14786435.2020.1748246.

    Article  CAS  Google Scholar 

  16. Bardeen J, Cooper LN, Schrieffer JR. Theory of superconductivity. Phys Rev. 1957;108:1175. https://doi.org/10.1103/PhysRev.108.1175.

    Article  CAS  Google Scholar 

  17. Yang JY, Qin G, Hu M. Nontrivial contribution of Fröhlich electron-phonon interaction to lattice thermal conductivity of wurtzite GaN. Appl Phys Lett. 2016;109:242103. https://doi.org/10.1063/1.4971985.

    Article  CAS  Google Scholar 

  18. Yang X, Jena A, Meng F, Wen S, Ma J, Li X, Li W. Indirect electron-phonon interaction leading to significant reduction of thermal conductivity in graphene. Mater Today Phys. 2021;18:100315. https://doi.org/10.1016/j.mtphys.2020.100315.

    Article  CAS  Google Scholar 

  19. Chen Y, Ma J, Li W. Understanding the thermal conductivity and Lorenz number in tungsten from first principles. Phys Rev B. 2019;99:020305. https://doi.org/10.1103/PhysRevB.99.020305.

    Article  CAS  Google Scholar 

  20. Zeng J, He X, Liang S-J, Liu E, Sun Y, Pan C, Wang Y, Cao T, Liu X, Wang C, Zhang L, Yan S, Su G, Wang Z, Watanabe K, Taniguchi T, Singh DJ, Zhang L, Miao F. Experimental identification of critical condition for drastically enhancing thermoelectric power factor of two-dimensional layered materials. Nano Lett. 2018;18:7538. https://doi.org/10.1021/acs.nanolett.8b03026.

    Article  CAS  Google Scholar 

  21. Chang Z, Liu K, Sun Z, Yuan K, Cheng S, Gao Y, Zhang X, Chen S, Zhang H, Wang N. First-principles investigation of the significant anisotropy and ultrahigh thermoelectric efficiency of a novel two-dimensional Ga2I2S2 at room temperature. Int J Extreme Manuf. 2022;4:025001. https://doi.org/10.1088/2631-7990/ac5f0f.

    Article  Google Scholar 

  22. Chen J, Xu X, Zhou J, Li B. Interfacial thermal resistance: past, present, and future. Rev Mod Phys. 2022;94:025002. https://doi.org/10.1103/RevModPhys.94.025002.

    Article  CAS  Google Scholar 

  23. Yu C, Hu Y, He J, Lu S, Li D, Chen J. Strong four-phonon scattering in monolayer and hydrogenated bilayer BAs with horizontal mirror symmetry. Appl Phys Lett. 2022;120:132201. https://doi.org/10.1063/5.0086608.

    Article  CAS  Google Scholar 

  24. Ouyang Y, Yu C, He J, Jiang P, Ren W, Chen J. Accurate description of high-order phonon anharmonicity and lattice thermal conductivity from molecular dynamics simulations with machine learning potential. Phys Rev B. 2022;105:115202. https://doi.org/10.1103/PhysRevB.105.115202.

    Article  CAS  Google Scholar 

  25. Bauer E, Paul C, Berger S, Majumdar S, Michor H, Giovannini M, Saccone A, Bianconi A. Thermal conductivity of superconducting MgB2. J Phys Condens Matter. 2001;13:L487. https://doi.org/10.1088/0953-8984/13/22/107.

    Article  CAS  Google Scholar 

  26. Devi JM, Ramachandran K. Thermal conductivity of MgB2 in normal state. Int J Mod Phys B. 2005;19:2197. https://doi.org/10.1142/S0217979205029821.

    Article  CAS  Google Scholar 

  27. Wang XJ, Mori T, Kuzmych-Ianchuk I, Michiue Y, Yubuta K, Shishido T, Grin T, Okada S, Cahill DG. Thermal conductivity of layered borides: the effect of building defects on the thermal conductivity of TmAlB4 and the anisotropic thermal conductivity of AlB2. APL Mater. 2014;2:046113. https://doi.org/10.1063/1.4871797.

    Article  CAS  Google Scholar 

  28. Choi HJ, Roundy D, Sun H, Cohen ML, Louie SG. The origin of the anomalous superconducting properties of MgB2. Nature. 2002;418:758. https://doi.org/10.1038/nature00898.

    Article  CAS  Google Scholar 

  29. Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti GL, Cococcioni M, Dabo I, Corso AD, Gironcoli Sd, Fabris S, Fratesi G, Gebauer R, Gerstmann U, Gougoussis C, Kokalj A, Lazzeri M, Martin-Samos L, Marzari N, Mauri F, Mazzarello R, Paolini S, Pasquarello A, Paulatto L, Sbraccia C, Scandolo S, Sclauzero G, Seitsonen AP, Smogunov A, Umari P, Wentzcovitch RM. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J Phys Condens Matter. 2009;21:395502. https://doi.org/10.1088/0953-8984/21/39/395502.

    Article  Google Scholar 

  30. Giannozzi P, Andreussi O, Brumme T, Bunau O, Buongiorno Nardelli M, Calandra M, Car R, Cavazzoni C, Ceresoli D, Cococcioni M, Colonna N, Carnimeo I, Dal Corso A, de Gironcoli S, Delugas P, DiStasio RA, Ferretti A, Floris A, Fratesi G, Fugallo G, Gebauer R, Gerstmann U, Giustino F, Gorni T, Jia J, Kawamura M, Ko H-Y, Kokalj A, Küçükbenli E, Lazzeri M, Marsili M, Marzari N, Mauri F, Nguyen NL, Nguyen H-V, Otero-de-la-Roza A, Paulatto L, Poncé S, Rocca D, Sabatini R, Santra B, Schlipf M, Seitsonen AP, Smogunov A, Timrov I, Thonhauser T, Umari P, Vast N, Wu X, Baroni S. Advanced capabilities for materials modelling with QUANTUM ESPRESSO. J Phys Condens Matter. 2017;29:465901. https://doi.org/10.1088/1361-648X/aa8f79.

    Article  CAS  Google Scholar 

  31. Hamann DR. Optimized norm-conserving Vanderbilt pseudopotentials. Phys Rev B. 2013;88:085117. https://doi.org/10.1103/PhysRevB.88.085117.

    Article  CAS  Google Scholar 

  32. Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett. 1996;77:3865. https://doi.org/10.1103/PhysRevLett.77.3865.

    Article  CAS  Google Scholar 

  33. Togo A, Oba F, Tanaka I. First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures. Phys Rev B. 2008;78:134106. https://doi.org/10.1103/PhysRevB.78.134106.

    Article  CAS  Google Scholar 

  34. Poncé S, Margine ER, Verdi C, Giustino F. EPW: electron–phonon coupling, transport and superconducting properties using maximally localized Wannier functions. Comput Phys Commun. 2016;209:116. https://doi.org/10.1016/j.cpc.2016.07.028.

    Article  CAS  Google Scholar 

  35. Giustino F, Cohen ML, Louie SG. Electron-phonon interaction using Wannier functions. Phys Rev B. 2007;76:165108. https://doi.org/10.1103/PhysRevB.76.165108.

    Article  CAS  Google Scholar 

  36. Margine ER, Giustino F. Anisotropic Migdal-Eliashberg theory using Wannier functions. Phys Rev B. 2013;87:024505. https://doi.org/10.1103/PhysRevB.87.024505.

    Article  CAS  Google Scholar 

  37. Bohnen KP, Heid R, Renker B. Phonon dispersion and electron-phonon coupling in MgB2 and AlB2. Phys Rev Lett. 2001;86:5771. https://doi.org/10.1103/PhysRevLett.86.5771.

    Article  CAS  Google Scholar 

  38. Mostofi AA, Yates JR, Lee Y-S, Souza I, Vanderbilt D, Marzari N. wannier90: a tool for obtaining maximally-localised Wannier functions. Comput Phys Commun. 2008;178:685. https://doi.org/10.1016/j.cpc.2007.11.016.

    Article  CAS  Google Scholar 

  39. Liao B, Qiu B, Zhou J, Huberman S, Esfarjani K, Chen G. Significant reduction of lattice thermal conductivity by the electron-phonon interaction in silicon with high carrier concentrations: a first-principles study. Phys Rev Lett. 2015;114:115901. https://doi.org/10.1103/PhysRevLett.114.115901.

    Article  CAS  Google Scholar 

  40. Li W, Carrete J, Katcho NA, Mingo N. ShengBTE: a solver of the Boltzmann transport equation for phonons. Comput Phys Commun. 2014;185:1747. https://doi.org/10.1016/j.cpc.2014.02.015.

    Article  CAS  Google Scholar 

  41. Kong Y, Dolgov OV, Jepsen O, Andersen OK. Electron-phonon interaction in the normal and superconducting states of MgB2. Phys Rev B. 2001;64:020501. https://doi.org/10.1103/PhysRevB.64.020501.

    Article  CAS  Google Scholar 

  42. d’Astuto M, Heid R, Renker B, Weber F, Schober H, De la Peña-Seaman O, Karpinski J, Zhigadlo ND, Bossak A, Krisch M. Nonadiabatic effects in the phonon dispersion of Mg1-xAlxB2. Phys Rev B. 2016;93:180508. https://doi.org/10.1103/PhysRevB.93.180508.

    Article  CAS  Google Scholar 

  43. Yildirim T, Gülseren O, Lynn JW, Brown CM, Udovic TJ, Huang Q, Rogado N, Regan KA, Hayward MA, Slusky JS, He T, Haas MK, Khalifah P, Inumaru K, Cava RJ. Giant anharmonicity and nonlinear electron-phonon coupling in MgB2: a combined first-principles calculation and neutron scattering study. Phys Rev Lett. 2001;87:037001. https://doi.org/10.1103/PhysRevLett.87.037001.

    Article  CAS  Google Scholar 

  44. Novko D, Caruso F, Draxl C, Cappelluti E. Ultrafast hot phonon dynamics in MgB2 driven by anisotropic electron-phonon coupling. Phys Rev Lett. 2020;124:077001. https://doi.org/10.1103/PhysRevLett.124.077001.

    Article  CAS  Google Scholar 

  45. Lakew B, Aslam S, Brasunas J, Cao N, Costen N, La A, Nyguyen L, Stevenson T, Waczynski A. MgB2 thin-film bolometer for applications in far-infrared instruments on future planetary missions. Phys C Supercond. 2012;483:119. https://doi.org/10.1016/j.physc.2012.08.007.

    Article  CAS  Google Scholar 

  46. Zhou JJ, Park J, Lu IT, Maliyov I, Tong X, Bernardi M. Perturbo: A software package for ab initio electron–phonon interactions, charge transport and ultrafast dynamics. Comput Phys Commun. 2021;264:107970. https://doi.org/10.1016/j.cpc.2021.107970.

    Article  CAS  Google Scholar 

  47. Mostofi AA, Yates JR, Pizzi G, Lee Y-S, Souza I, Vanderbilt D, Marzari N. An updated version of wannier90: a tool for obtaining maximally-localised Wannier functions. Comput Phys Commun. 2014;185:2309. https://doi.org/10.1016/j.cpc.2014.05.003.

    Article  CAS  Google Scholar 

  48. Tian BZ, Jiang XP, Chen J, Gao H, Wang ZG, Tang J, Zhou DL, Yang L, Chen ZG. Low lattice thermal conductivity and enhanced thermoelectric performance of SnTe via chemical electroless plating of Ag. Rare Metals. 2021. https://doi.org/10.1007/s12598-021-01805-1.

    Article  Google Scholar 

  49. Hicks LD, Harman TC, Dresselhaus MS. Use of quantum-well superlattices to obtain a high figure of merit from nonconventional thermoelectric materials. Appl Phys Lett. 1993;63:3230. https://doi.org/10.1063/1.110207.

    Article  CAS  Google Scholar 

  50. Hicks LD, Dresselhaus MS. Effect of quantum-well structures on the thermoelectric figure of merit. Phys Rev B. 1993;47:12727. https://doi.org/10.1103/PhysRevB.47.12727.

    Article  CAS  Google Scholar 

  51. Callaway J. Model for lattice thermal conductivity at low temperatures. Phys Rev. 1959;113:1046. https://doi.org/10.1103/PhysRev.113.1046.

    Article  CAS  Google Scholar 

  52. Li W, Mingo N. Thermal conductivity of fully filled skutterudites: role of the filler. Phys Rev B. 2014;89:184304. https://doi.org/10.1103/PhysRevB.89.184304.

    Article  CAS  Google Scholar 

  53. Yuan K, Zhang X, Tang D, Hu M. Anomalous pressure effect on the thermal conductivity of ZnO, GaN, and AlN from first-principles calculations. Phys Rev B. 2018;98:144303. https://doi.org/10.1103/PhysRevB.98.144303.

    Article  CAS  Google Scholar 

  54. Tang D-S, Qin G-Z, Hu M, Cao B-Y. Thermal transport properties of GaN with biaxial strain and electron-phonon coupling. J Appl Phys. 2020;127:035102. https://doi.org/10.1063/1.5133105.

    Article  CAS  Google Scholar 

  55. Noffsinger J, Cohen ML. First-principles calculation of the electron-phonon coupling in ultrathin Pb superconductors: suppression of the transition temperature by surface phonons. Phys Rev B. 2010;81:214519. https://doi.org/10.1103/PhysRevB.81.214519.

    Article  CAS  Google Scholar 

  56. Huang GQ. Electronic structures, surface phonons, and electron-phonon interactions of Al(100) and Al(111) thin films from density functional perturbation theory. Phys Rev B. 2008;78:214514. https://doi.org/10.1103/PhysRevB.78.214514.

    Article  CAS  Google Scholar 

  57. Saniz R, Partoens B, Peeters FM. Confinement effects on electron and phonon degrees of freedom in nanofilm superconductors: a green function approach. Phys Rev B. 2013;87:064510. https://doi.org/10.1103/PhysRevB.87.064510.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (Nos. 51720105007, 52076031 and 51806031), the Fundamental Research Funds for the Central Universities (No. DUT19RC(3)006) and the computing resources from Super-computing Center of Dalian University of Technology which are greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiao-Liang Zhang, Yu-Fei Gao or Da-Wei Tang.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2007 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, S., Chang, Z., Zhang, XL. et al. Phonon thermal transport properties of XB2 (X = Mg and Al) compounds: considering quantum confinement and electron–phonon interaction. Rare Met. 42, 3064–3074 (2023). https://doi.org/10.1007/s12598-023-02301-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-023-02301-4

Keywords

Navigation