Skip to main content

Advertisement

Log in

LiNi0.7Co0.15Mn0.15O2 microspheres as high-performance cathode materials for lithium-ion batteries

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Advanced uniform LiNi0.7Co0.15Mn0.15O2 microspheres were successfully synthesized and examined as cathode materials for lithium-ion batteries. The structure, morphology, and electrochemical performance of LiNi0.7Co0.15Mn0.15O2 calcined at different temperatures ranging from 650 to 900 °C were systematically investigated. The XRD results show that the material has a well-ordered layered structure with small amount of cation mixing. A distinct spherical morphology of the obtained powders prepared at different temperatures can be seen from the SEM images. The as-synthesized LiNi0.7Co0.15Mn0.15O2 powders have a very high-tap density of about 2.37 g·cm−3. Among all the samples, the sample calcined at 750 °C exhibits the best electrochemical performance with an initial discharge capacity of 185.2 mAh·g−1 (3.0–4.3 V, 0.2C rate) and capacity retention >94.77 % after 50 cycles. Moreover, this material shows high-specific capacity and good cycling stability. The LiNi0.7Co0.15Mn0.15O2 microspheres with high-specific capacity and high-tap density are promising to use as cathode materials for next-generation high-energy-density lithium-ion batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Weinstock IB. Recent advances in the US department of energy’s energy storage technology research and development programs for hybrid electric and electric vehicles. J Power Sources. 2002;110(2):471.

    Article  Google Scholar 

  2. Dahn JR, Von Sacken U, Michal CA. Structure and electrochemistry of Liy NiO2 and a new Li2NiO2 phase with the Ni (OH)2 structure. Solid State Ionics. 1990;44(1–2):87.

    Article  Google Scholar 

  3. Koksbang R, Barker J, Shi H, Saidi MY. Cathode materials for lithium rocking chair batteries. Solid State Ionics. 1996;84(1–2):1.

    Article  Google Scholar 

  4. Whittingham MS. Lithium batteries and cathode materials. Chem Rev. 2004;104(10):4271.

    Article  Google Scholar 

  5. Tarascon JM, Armand M. Issues and challenges facing rechargeable lithium batteries. Nature. 2001;414:359.

    Article  Google Scholar 

  6. Cao J, Cao GS, Yu HM, Xie J, Zhao XB. Synthesis and electrochemical performance of YF3-coated LiMn2O4 cathode materials for Li-ion batteries. Rare Met. 2011;30(1):39.

    Article  Google Scholar 

  7. Chebiam RV, Prado F, Manthuram A. Structural instability of delithiated Li1−x Ni1−y Co y O2 cathodes. J Electrochem Soc. 2001;148(1):A49.

    Article  Google Scholar 

  8. Luo WB, Zhou F, Zhao XM, Lu ZH, Li XH, Dahn JR. Synthesis, characterization, and thermal stability of LiNi1/3Mn1/3Co1/3−z Mg z O2, LiNi1/3−z Mn1/3Co1/3Mg z O2, and LiNi1/3Mn1/3−z Co1/3Mg z O2. Chem Mater. 2010;22(3):1164.

    Article  Google Scholar 

  9. Patoux S, Doeff MM. Direct synthesis of LiNi1/3Co1/3Mn1/3O2 from nitrate precursors. Electrochem Commun. 2004;6(8):767.

    Article  Google Scholar 

  10. Lee MH, Kang YJ, Myung ST, Sun YK. Synthetic optimization of Li[Ni1/3Co1/3Mn1/3]O2 via co-precipitation. Electrochim Acta. 2004;50(4):939.

    Article  Google Scholar 

  11. Cao H, Zhang Y, Zhang J, Xia BJ. Synthesis and electrochemical characteristics of layered LiNi0.6Co0.2Mn0.2O2 cathode material for lithium ion batteries. Solid State Ionics. 2005;176(13–14):1207.

    Article  Google Scholar 

  12. Li XW, Lin YB, Lin Y, Lai H, Huang ZG. Surface modification of LiNi1/3Co1/3Mn1/3O2 with Cr2O3 for lithium ion batteries. Rare Met. 2012;31(3):140.

    Article  Google Scholar 

  13. Kim MH, Shin HS, Shin DW, Sun YK. Synthesis and electrochemical properties of LiNi0.8Co0.1Mn0.1O2 and LiNi0.8Co0.2O2 via co-precipitation. J Power Sources. 2006;159(2):1328.

    Article  Google Scholar 

  14. Dahbi M, Saadoune I, Amarilla JM. Li x Ni0.7Co0.3O2 electrode material: structural, physical and electrochemical investigations. Electrochim Acta. 2008;53(16):5266.

    Article  Google Scholar 

  15. Rougier A, Saadoune I, Gravereau P, Willmann P, Delmas C. Effect of cobalt substitution on cationic distribution in LiNi1−y Co y O2 electrode materials. Solid State Ionics. 1996;90(1–4):83.

    Article  Google Scholar 

  16. Eom J, Kim MG, Cho J. Storage characteristics of LiNi0.8Co0.1+x Mn0.1−x O2 (x = 0, 0.03, and 0.06) cathode materials for lithium batteries. J Electrochem Soc. 2008;155(3):A239.

    Article  Google Scholar 

  17. Liao PY, Duh JG, Sheen SR. Microstructure and electrochemical performance of LiNi0.6Co0.4−x Mn x O2 cathode materials. J Power Sources. 2005;143(1–2):212.

    Article  Google Scholar 

  18. Lundblad A, Bergman B. Synthesis of LiCoO2 starting from carbonate precursors I. The reaction mechanisms. Solid State Ionics. 1997;96(3–4):173.

    Article  Google Scholar 

  19. Li H, Chen G, Zhang B, Xu J. Advanced electrochemical performance of Li[Ni(1/3−x )Fe x Co1/3Mn1/3]O2 as cathode materials for lithium-ion battery. Solid State Commun. 2008;146(3–4):115.

    Article  Google Scholar 

  20. Ying J, Wan C, Jiang C, Li Y. Preparation and characterization of high-density spherical LiNi0.8Co0.2O2 cathode material for lithium secondary batteries. J Power Sources. 2001;99(1):78.

    Article  Google Scholar 

  21. Gummow RJ, Thackeray MM, David WIF, Hull S. Structure and electrochemistry of lithium cobalt oxide synthesised at 400°C. Mater Res Bull. 1992;27(3):327.

    Article  Google Scholar 

  22. Ding Y, Zhang P, Gao D. Synthesis and electrochemical properties of layered Li[Ni1/3Co1/3Mn1/3]0.96Ti0.04O1.96F0.04 as cathode material for lithium-ion batteries. J Alloys Compd. 2008;456(1–2):344.

    Article  Google Scholar 

  23. Guimard M, Pouillerie C, Croguennec L, Delmas C. Structural and electrochemical properties of LiNi0.70Co0.15Al0.15O2. Solid State Ionics. 2003;160(1–2):39.

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (No. 21001117) and the National Science Foundation for Post-Doctoral Scientists of China (No. 2011M501286).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhou-Guang Lu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, ZG., Tan, XX., Tang, YG. et al. LiNi0.7Co0.15Mn0.15O2 microspheres as high-performance cathode materials for lithium-ion batteries. Rare Met. 33, 608–614 (2014). https://doi.org/10.1007/s12598-013-0097-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-013-0097-y

Keywords

Navigation