Skip to main content
Log in

Microstructure and mechanical properties of B4C-TiB2-Al composites fabricated by vacuum infiltration

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

B4C-TiB2-Al composites were fabricated by infiltrating aluminum into porous B4C-TiB2 preforms in vacuum. The microstucture and mechanical properties of the B4C-TiB2-Al composites were investigated. The hardness decreased, the flexural strength increased, and the fracture toughness first increased and then decreased slightly with an increase in TiB2 content. The B4C-TiB2-Al composite with 40wt.% TiB2 showed the optimized properties. The infiltrated aluminum addition was the leading reason for the fracture toughness improvement of the composites. The tear ridges and dimples on the fracture surface of the composites increased gradually with the increase of infiltrated aluminum content showing inter/transgranular fracture mode. The relationships between the microstructures and the mechanical properties of the composites were discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fanchini G., Gupta V., Mann A.B., and Chhowalla M., In situ monitoring of structural changes in boron carbide under electric fields, J. Am. Ceram. Soc., 2008, 91(8): 2666.

    Article  CAS  Google Scholar 

  2. Hayun S., Rittel D., Frage N., and Dariel M.P., Static and dynamic mechanical properties of infiltrated B4C-Si composites, Mater. Sci. Eng. A, 2008, 487(1–2): 405.

    Google Scholar 

  3. Larsson P., Axén N., and Hogmark S., Improvements of the microstructure and erosion resistance of boron carbide with additives, J. Mater. Sci., 2000, 35(14): 3433.

    Article  CAS  Google Scholar 

  4. Roy T.K., Subramanian C., and Suri A.K., Pressureless sintering of boron carbide, Ceram. Int., 2006, 32(3): 227.

    Article  CAS  Google Scholar 

  5. Thévenot F., Boron carbide—A comprehensive review, J. Eur. Ceram. Soc., 1990, 6(4): 205.

    Article  Google Scholar 

  6. Lee H., Speyer R.F., and Hackenberger W.S., Sintering of boron carbide heat-treated with hydrogen, J. Am. Ceram. Soc., 2002, 85(8): 2131.

    Article  CAS  Google Scholar 

  7. Chen M.W., McCauley J.W., LaSalvia J.C., and Hemker K.J., Microstructural characterization of commercial hot-pressed boron carbide ceramics, J. Am. Ceram. Soc., 2005, 88(7): 1935.

    Article  CAS  Google Scholar 

  8. Halverson D.C., Pyzik A.J., Aksay I.A., and Snowden W.E., Processing of boron carbide-aluminium composites, J. Am. Ceram. Soc., 1989, 72(5): 775.

    Article  CAS  Google Scholar 

  9. Thévenot F. Sintering of boron carbide-silicon carbide two-phase materials and their properties, J. Nucl. Mater., 1988, 152(2–3): 154.

    Article  ADS  Google Scholar 

  10. Heian E.M., Khalsa S.K., Lee J.W., and Munir Z.A., Synthesis of dense, high-defect-concentration B4C through mechanical activation and field-assisted combustion, J. Am. Ceram. Soc., 2004, 87(5): 779.

    Article  CAS  Google Scholar 

  11. Marianna K., Christoper S.M., and Andreas M., Effect of reaction on the tensile behavior of infiltrated boron carbide-aluminum composites, Mater. Sci. Eng. A, 2002, 337(1–2): 264.

    Google Scholar 

  12. Adrian G., Yehoshua Y., and Ayala G., B4C/metal boride composites derived from B4C/metal oxide mixtures, J. Eur. Ceram. Soc., 2007, 27(2–3): 695.

    Google Scholar 

  13. Shi L., Gu Y.L., Chen L.Y., Qian Y.T., Yang Z.H., and Ma J.H., A low temperature synthesis of crystalline B4C ultrafine powders, Solid State Commun., 2003, 128(1): 5.

    Article  CAS  ADS  Google Scholar 

  14. Yamada S., Hirao K., Yamauchi Y., and Kanzaki S., Mechanical and electrical properties of B4C-CrB2 ceramics fabricated by liquid phase sintering, Ceram. Int., 2003, 29(3): 299.

    Article  CAS  Google Scholar 

  15. Sigl L.S., and Kleebe H.J., Microcracking in B4C-TiB2 composites, J. Am. Ceram. Soc., 1995, 78(9): 2374.

    Article  CAS  Google Scholar 

  16. Tuffé S., Dubois J., Fantozzi G., and Barbier G., Densification, microstructure and mechanical properties of TiB2-B4C based composites, Int. J. Refract. Met. Hard Mater., 1996, 14(5–6): 305.

    Article  Google Scholar 

  17. Skorokhod V. Jr., Vlajic M.D., and Krstic V.D., Mechanical properties of pressureless sintered boron carbide containing TiB2 phase, J. Mater. Sci. Lett., 1996, 15(15): 1337.

    Article  CAS  Google Scholar 

  18. Yamada S., Hirao K., Yamauchi Y., and Kanzaki S., Mechanical and electrical properties of B4C-CrB2 ceramics fabricated by liquid phase sintering, J. Eur. Ceram. Soc., 2003, 23(8): 1123.

    Article  CAS  Google Scholar 

  19. Skorokhod V. and Krstic V.D., High strength-high toughness B4C-TiB2 composites, J. Mater. Sci. Lett., 2000, 19(3): 237.

    Article  CAS  Google Scholar 

  20. Jung J. and Kang S., Advances in manufacturing boron carbide-aluminum composites, J. Am. Ceram. Soc., 2004, 87(1): 47.

    Article  CAS  MathSciNet  Google Scholar 

  21. Lee B.S., and Kang S., Low-temperature processing of B4C-Al composites via in filtration technique, Mater. Chem. Phys., 2001, 67(1–3): 249.

    Article  CAS  Google Scholar 

  22. Srivatsan T.S., Guruprasad G., Black D., Radhakrishnan R., and Sudarshan T.S., Influence of TiB2 content on microstructure and hardness of TiB2-B4C composite, Powder Technol., 2005, 159(3): 161.

    Article  CAS  Google Scholar 

  23. Bartolome J.F., Diaz M., Moya J.S. Influence of the metal particle size on the crack growth resistance in mullite-molybdenum composites. J. Am. Ceram. Soc., 2002, 85(11): 2778.

    CAS  Google Scholar 

  24. Cha S.I., Hon S.H., Ha G.H., and Kim B.K., Mechanical properties of WC-10Co cemented carbides sintered from nanocrystalline spray conversion processed powders, Int. J. Refract. Met. Hard Mater., 2001, 19(4–6): 397.

    Article  CAS  Google Scholar 

  25. Dubey S., Srivatsan T.S., and Soboyejo W.O., Fatigue crack propagation and fracture characteristics of in-situ titanium-matrix composites, Int. J. Fatigue, 2000, 22(2): 161.

    Article  CAS  Google Scholar 

  26. Yeomans J.A., Ductile particle ceramic matrix composites—Scientific curiosities or engineering materials, J. Eur. Ceram. Soc., 2008, 28(7): 1543.

    Article  CAS  Google Scholar 

  27. Viala J.C., Bouix J., and Gonzalez G., Chemical reactivity of aluminum with boron carbide, J. Mater. Sci., 1997, 32(17): 4559.

    Article  CAS  Google Scholar 

  28. Yamada S., Hirao K., Yamauchi Y., and Kanzaki S., High strength B4C-TiB2 composites fabricated by reaction hot-pressing, J. Eur. Ceram. Soc., 2003, 23(7): 1123.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongqiang Ru.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lü, P., Yue, X., Ru, H. et al. Microstructure and mechanical properties of B4C-TiB2-Al composites fabricated by vacuum infiltration. Rare Metals 29, 92–97 (2010). https://doi.org/10.1007/s12598-010-0016-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-010-0016-4

Keywords

Navigation