Skip to main content
Log in

High performance metal oxide based sensing device using an electrode with a solid/liquid/air triphase interface

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The wetting properties of an electrode surface are of significant importance to the performance of electrochemical devices because electron transfer occurs at the electrode/electrolyte interface. Described in this paper is a low-cost metal oxide electrocatalyst (CuO)-based high-performance sensing device using an enzyme electrode with a solid/liquid/air triphase interface in which the oxygen level is constant and sufficiently high. We apply the sensing device to detect glucose, a model test analyte, and demonstrate a linear dynamic range up to 50 mM, which is about 25 times higher than that obtained using a traditional enzyme electrode with a solid/liquid diphase interface. Moreover, we show that sensing devices based on a triphase assaying interface are insensitive to the significant oxygen level fluctuation in the analyte solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barthlott, W.; Neinhuis, C. Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta 1997, 202, 1–8.

    Article  Google Scholar 

  2. Cassie, A. B. D.; Baxter, S. Wettability of porous surfaces. Trans. Faraday Soc. 1944, 40, 546–551.

    Article  Google Scholar 

  3. Feng, L.; Li, S. H.; Li, Y. S.; Li, H. J.; Zhang, L. J.; Zhai, J.; Song, Y. L.; Liu, B. Q.; Jiang, L.; Zhu, D. B. Superhydrophobic surfaces: From natural to artificial. Adv. Mater. 2002, 14, 1857–1860.

    Article  Google Scholar 

  4. Lafuma, A.; Quéré, D. Superhydrophobic states. Nat. Mater. 2003, 2, 457–460.

    Article  Google Scholar 

  5. Liu, T. Y.; Kim, C. J. Turning a surface superrepellent even to completely wetting liquids. Science 2014, 346, 1096–1100.

    Article  Google Scholar 

  6. Stojanovic, A.; Artus, G. R. J.; Seeger, S. Micropatterning of superhydrophobic silicone nanofilaments by a near-ultraviolet Nd:YAG laser. Nano Res. 2010, 3, 889–894.

    Article  Google Scholar 

  7. Li, J.; Hou, Y. M.; Liu, Y. H.; Hao, C. L.; Li, M. F.; Chaudhury, M. K.; Yao, S. H.; Wang, Z. K. Directional transport of high-temperature Janus droplets mediated by structural topography. Nat. Phys. 2016, 12, 606–612.

    Article  Google Scholar 

  8. Lu, Y.; Sathasivam, S.; Song, J. L.; Crick, C. R.; Carmalt, C. J.; Parkin, I. P. Robust self-cleaning surfaces that function when exposed to either air or oil. Science 2015, 347, 1132–1135.

    Article  Google Scholar 

  9. Wang, S. T.; Liu, K. S.; Yao, X.; Jiang, L. Bioinspired surfaces with superwettability: New insight on theory, design, and applications. Chem. Rev. 2015, 115, 8230–8293.

    Article  Google Scholar 

  10. Gwon, H. J.; Park, Y.; Moon, C. W.; Nahm, S.; Yoon, S.-J.; Kim, S. Y.; Jang, H. W. Superhydrophobic and antireflective nanograss-coated glass for high performance solar cells. Nano Res. 2014, 7, 670–678.

    Article  Google Scholar 

  11. Su, B.; Wang, S. T.; Song, Y. L.; Jiang, L. A miniature droplet reactor built on nanoparticle-derived superhydrophobic pedestals. Nano Res. 2011, 4, 266–273.

    Article  Google Scholar 

  12. Deng, X.; Mammen, L.; Butt, H. J.; Vollmer, D. Candle soot as a template for a transparent robust superamphiphobic coating. Science 2012, 335, 67–70.

    Article  Google Scholar 

  13. Aebisher, D.; Bartusik, D.; Liu, Y.; Zhao, Y. Y.; Barahman, M.; Xu, Q. F.; Lyons, A. M.; Greer, A. Superhydrophobic photosensitizers. Mechanistic studies of 1O2 generation in the plastron and solid/liquid droplet interface. J. Am. Chem. Soc. 2013, 135, 18990–18998.

    Article  Google Scholar 

  14. Lei, Y. J.; Sun, R. Z.; Zhang, X. C.; Feng, X. J.; Jiang, L. Oxygen-rich enzyme biosensor based on superhydrophobic electrode. Adv. Mater. 2016, 28, 1477–1481.

    Article  Google Scholar 

  15. Lu, Z. Y.; Xu, W. W.; Ma, J.; Li, Y. J.; Sun, X. M.; Jiang, L. Superaerophilic carbon-nanotube-array electrode for highperformance oxygen reduction reaction. Adv. Mater. 2016, 28, 7155–7161.

    Article  Google Scholar 

  16. Wang, S. S.; Wu, Y. C.; Kan, X. N.; Su, B.; Jiang, L. Regular metal sulfide microstructure arrays contributed by ambient-connected gas matrix trapped on superhydrophobic surface. Adv. Funct. Mater. 2014, 24, 7007–7013.

    Article  Google Scholar 

  17. Guilbault, G. G.; Lubrano, G. J. An enzyme electrode for the amperometric determination of glucose. Anal. Chim. Acta 1973, 64, 439–455.

    Article  Google Scholar 

  18. Wilson, G. S.; Hu, Y. B. Enzyme-based biosensors for in vivo measurements. Chem. Rev. 2000, 100, 2693–2704.

    Article  Google Scholar 

  19. Heller, A.; Feldman, B. Electrochemical glucose sensors and their applications in diabetes management. Chem. Rev. 2008, 108, 2482–2505.

    Article  Google Scholar 

  20. Wang, J. Electrochemical glucose biosensors. Chem. Rev. 2008, 108, 814–825.

    Article  Google Scholar 

  21. Chu, Z. Y.; Shi, L.; Liu, Y.; Jin, W. Q.; Xu, N. P. In-situ growth of micro-cubic Prussian blue-TiO2 composite film as a highly sensitive H2O2 sensor by aerosol co-deposition approach. Biosens. Bioelectron. 2013, 47, 329–334.

    Article  Google Scholar 

  22. Zhang, L.; Ni, Y. H.; Wang, X. H.; Zhao, G. C. Direct electrocatalytic oxidation of nitric oxide and reduction of hydrogen peroxide based on α-Fe2O3 nanoparticles-chitosan composite. Talanta 2010, 82, 196–201.

    Article  Google Scholar 

  23. Asif, M. H.; Ali, S. M.; Nur, O.; Willander, M.; Brannmark, C.; Strålfors, P.; Englund, U. H.; Elinder, F.; Danielsson, B. Functionalised ZnO-nanorod-based selective electrochemical sensor for intracellular glucose. Biosens. Bioelectron. 2010, 25, 2205–2211.

    Article  Google Scholar 

  24. Hahn, Y. B.; Ahmad, R.; Tripathy, N. Chemical and biological sensors based on metal oxide nanostructures. Chem. Commun. 2012, 48, 10369–10385.

    Article  Google Scholar 

  25. Umar, A.; Rahman, M. M.; Al-Hajry, A.; Hahn, Y. B. Enzymatic glucose biosensor based on flower-shaped copper oxide nanostructures composed of thin nanosheets. Electrochem. Commun. 2009, 11, 278–281.

    Article  Google Scholar 

  26. Li, C. L.; Kurniawan, M.; Sun, D. L.; Tabata, H.; Delaunay, J. J. Nanoporous CuO layer modified Cu electrode for high performance enzymatic and non-enzymatic glucose sensing. Nanotechnology 2015, 26, 015503.

    Article  Google Scholar 

  27. Zhang, J.; Sheng, X.; Cheng, X. Q.; Chen, L. P.; Jin, J.; Feng, X. J. Robust electrochemical metal oxide deposition using an electrode with a superhydrophobic surface. Nanoscale 2017, 9, 87–90.

    Article  Google Scholar 

  28. Cussler, E. L. Diffusion: Mass Transfer in Fluid Systems; Cambridge University Press: Cambridge, 1984.

    Google Scholar 

Download references

Acknowledgements

This work is financially supported by the National Natural Science Foundation of China (No. 21371178), the Jiangsu Province Science Foundation for Distinguished Young Scholars (No. BK20150032), and the Chinese Thousand Youth Talents Program (No. YZBQF11001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinjian Feng.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Sheng, X., Jin, J. et al. High performance metal oxide based sensing device using an electrode with a solid/liquid/air triphase interface. Nano Res. 10, 2998–3004 (2017). https://doi.org/10.1007/s12274-017-1510-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1510-x

Keywords

Navigation