Skip to main content
Log in

Improving the structural stability of Li-rich cathode materials via reservation of cations in the Li-slab for Li-ion batteries

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

High-capacity Li-rich cathode materials can significantly improve the energy density of lithium-ion batteries, which is the key limitation to miniaturization of electronic devices and further improvement of electrical-vehicle mileage. However, severe voltage decay hinders the further commercialization of these materials. Insights into the relationship between the inherent structural stability and external appearance of the voltage decay in high-energy Li-rich cathode materials are critical to solve this problem. Here, we demonstrate that structural evolution can be significantly inhibited by the intentional introduction of certain adventive cations (such as Ni2+) or by premeditated reservation of some of the original Li+ ions in the Li slab in the delithiated state. The voltage decay of Li-rich cathode materials over 100 cycles decreased from 500 to 90 or 40 mV upon introducing Ni2+ or retaining some Li+ ions in the Li slab, respectively. The cations in the Li slab can serve as stabilizers to reduce the repulsion between the two neighboring oxygen layers, leading to improved thermodynamic stability. Meanwhile, the cations also suppress transition metal ion migration into the Li slab, thereby inhibiting structural evolution and mitigating voltage decay. These findings provide insights into the origin of voltage decay in Li-rich cathode materials and set new guidelines for designing these materials for high-energy-density Li-ion batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dunn, B.; Kamath, H.; Tarascon, J. M. Electrical energy storage for the grid: A battery of choices. Science 2011, 334, 928–935.

    Article  Google Scholar 

  2. Armand, M.; Tarascon, J. M. Building better batteries. Nature 2008, 451, 652–657.

    Article  Google Scholar 

  3. Whittingham, M. S. Ultimate limits to intercalation reactions for lithium batteries. Chem. Rev. 2014, 114, 11414–11443.

    Article  Google Scholar 

  4. Liu, W.; Oh, P.; Liu, X. E.; Lee, M. J.; Cho, W.; Chae, S.; Kim, Y.; Cho, J. Nickel-rich layered lithium transition-metal oxide for high-energy lithium-ion batteries. Angew. Chem., Int. Ed. 2015, 54, 4440–4457.

    Article  Google Scholar 

  5. Croy, J. R.; Balasubramanian, M.; Gallagher, K. G.; Burrell, A. K. Review of the U.S. department of energy’s “deep dive” effort to understand voltage fade in Li- and Mn-rich cathodes. Acc. Chem. Res. 2015, 48, 2813–2821.

    Article  Google Scholar 

  6. Xin, S.; Guo, Y. G.; Wan, L. J. Nanocarbon networks for advanced rechargeable lithium batteries. Acc. Chem. Res. 2012, 45, 1759–1769.

    Article  Google Scholar 

  7. Goodenough, J. B.; Park, K. S. The Li-ion rechargeable battery: A perspective. J. Am. Chem. Soc. 2013, 135, 1167–1176.

    Article  Google Scholar 

  8. Manthiram, A.; Knight, J. C.; Myung, S.-T.; Oh, S.-M.; Sun, Y.-K. Nickel-rich and lithium-rich layered oxide cathodes: Progress and perspectives. Adv. Energy Mater. 2016, 6, 1501010.

    Article  Google Scholar 

  9. Nan, C. Y.; Lu, J.; Li, L. H.; Li, L. L.; Peng, Q.; Li, Y. D. Size and shape control of LiFePO4 nanocrystals for better lithium ion battery cathode materials. Nano Res. 2013, 6, 469–477.

    Article  Google Scholar 

  10. Jiang, K. C.; Wu, X. L.; Yin, Y. X.; Lee, J. S.; Kim, J.; Guo, Y. G. Superior hybrid cathode material containing lithiumexcess layered material and graphene for lithium-ion batteries. ACS Appl. Mater. Interfaces 2012, 4, 4858–4863.

    Article  Google Scholar 

  11. Lu, Z. H.; MacNeil, D. D.; Dahn, J. R. Layered cathode materials Li[NixLi(1/3−2x/3)Mn(2/3−x/3)]O2 for lithium-ion batteries. Electrochem. Solid-State Lett. 2001, 4, A191–A194.

    Article  Google Scholar 

  12. Yu, H. J.; Zhou, H. S. High-energy cathode materials (Li2MnO3–LiMO2) for lithium-ion batteries. J. Phys. Chem. Lett. 2013, 4, 1268–1280.

    Article  Google Scholar 

  13. Feng, X.; Yang, Z. Z.; Tang, D. C.; Kong, Q. Y.; Gu, L.; Wang, Z. X.; Chen, L. Q. Performance improvement of Li-rich layer-structured Li1.2Mn0.54Ni0.13Co0.13O2 by integration with spinel LiNi0.5Mn1.5O4. Phys. Chem. Chem. Phys. 2015, 17, 1257–1264.

    Article  Google Scholar 

  14. Ma, J.; Zhou, Y. N.; Gao, Y. R.; Yu, X. Q.; Kong, Q. Y.; Gu, L.; Wang, Z. X.; Yang, X. Q.; Chen, L. Q. Feasibility of using Li2MoO3 in constructing Li-rich high energy density cathode materials. Chem. Mater. 2014, 26, 3256–3262.

    Article  Google Scholar 

  15. Liu, J. L.; Hou, M. Y.; Yi, J.; Guo, S. S.; Wang, C. X.; Xia, Y. Y. Improving the electrochemical performance of layered lithium-rich transition-metal oxides by controlling the structural defects. Energy Environ. Sci. 2014, 7, 705–714.

    Article  Google Scholar 

  16. Lu, Z. H.; Beaulieu, L. Y.; Donaberger, R. A.; Thomas, C. L.; Dahn, J. R. Synthesis, structure, and electrochemical behavior of Li[NixLi1/3−2x/3Mn2/3−x/3]O2. J. Electrochem. Soc. 2002, 149, A778–A791.

    Article  Google Scholar 

  17. Zheng, J. M.; Gu, M.; Genc, A.; Xiao, J.; Xu, P. H.; Chen, X. L.; Zhu, Z. H.; Zhao, W. B.; Pullan, L.; Wang, C. M. et al. Mitigating voltage fade in cathode materials by improving the atomic level uniformity of elemental distribution. Nano Lett. 2014, 14, 2628–2635.

    Article  Google Scholar 

  18. Shukla, A. K.; Ramasse, Q. M.; Ophus, C.; Duncan, H.; Hage, F.; Chen, G. Y. Unravelling structural ambiguities in lithium- and manganese-rich transition metal oxides. Nat. Commun. 2015, 6, 8711.

    Article  Google Scholar 

  19. Liu, W.; Oh, P.; Liu, X. E.; Myeong, S.; Cho, W.; Cho, J. Countering voltage decay and capacity fading of lithiumrich cathode material at 60 °C by hybrid surface protection layers. Adv. Energy Mater. 2015, 5, 1500274.

    Article  Google Scholar 

  20. Hong, J.; Gwon, H.; Jung, S. K.; Ku, K.; Kang, K. Review—Lithium-excess layered cathodes for lithium rechargeable batteries. J. Electrochem. Soc. 2015, 162, A2447–A2467.

    Article  Google Scholar 

  21. Rozier, P.; Tarascon, J. M. Review—Li-rich layered oxide cathodes for next-generation Li-ion batteries: Chances and challenges. J. Electrochem. Soc. 2015, 162, A2490–A2499.

    Article  Google Scholar 

  22. Qing, R. P.; Shi, J. L.; Zhai, Y. B.; Zhang, X. D.; Yin, Y. X.; Gu, L.; Guo, Y. G. Synthesis and electrochemical properties of a high capacity Li-rich cathode material in molten KCl-Na2CO3 flux. Electrochim. Acta 2016, 196, 749–755.

    Article  Google Scholar 

  23. Yabuuchi, N.; Yoshii, K.; Myung, S. T.; Nakai, I.; Komaba, S. Detailed studies of a high-capacity electrode material for rechargeable batteries, Li2MnO3-LiCo1/3Ni1/3Mn1/3O2. J. Am. Chem. Soc. 2011, 133, 4404–4419.

    Article  Google Scholar 

  24. Ko, M.; Oh, P.; Chae, S.; Cho, W.; Cho, J. Considering critical factors of Li-rich cathode and Si anode materials for practical Li-ion cell applications. Small 2015, 11, 4058–4073.

    Article  Google Scholar 

  25. Yan, P. F.; Nie, A. M.; Zheng, J. M.; Zhou, Y. G.; Lu, D. P.; Zhang, X. F.; Xu, R.; Belharouak, I.; Zu, X. T.; Xiao, J. et al. Evolution of lattice structure and chemical composition of the surface reconstruction layer in Li1.2Ni0.2Mn0.6O2 cathode material for lithium ion batteries. Nano Lett. 2015, 15, 514–522.

    Article  Google Scholar 

  26. Lin, F.; Markus, I. M.; Nordlund, D.; Weng, T. C.; Asta, M. D.; Xin, H. L.; Doeff, M. M. Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries. Nat. Commun. 2014, 5, 3529.

    Google Scholar 

  27. Sathiya, M.; Abakumov, A. M.; Foix, D.; Rousse, G.; Ramesha, K.; Saubanère, M.; Doublet, M. L.; Vezin, H.; Laisa, C. P.; Prakash, A. S. et al. Origin of voltage decay in high-capacity layered oxide electrodes. Nat. Mater. 2015, 14, 230–238.

    Article  Google Scholar 

  28. Fan, L. J.; Tang, D. C.; Wang, D. Y.; Wang, Z. X.; Chen, L. Q. LiCoO2-catalyzed electrochemical oxidation of Li2CO3. Nano Res. 2016, 9, 3903–3913.

    Article  Google Scholar 

  29. Shi, J. L.; Zhang, J. N.; He, M.; Zhang, X. D.; Yin, Y. X.; Li, H.; Guo, Y. G.; Gu, L.; Wan, L. J. Mitigating voltage decay of Li-rich cathode material via increasing Ni content for lithium-ion batteries. ACS Appl. Mater. Interfaces 2016, 8, 20138–20146.

    Article  Google Scholar 

  30. Jiang, K. C.; Xin, S.; Lee, J. S.; Kim, J.; Xiao, X. L.; Guo, Y. G. Improved kinetics of LiNi1/3Mn1/3Co1/3O2 cathode material through reduced graphene oxide networks. Phys. Chem. Chem. Phys. 2012, 14, 2934–2939.

    Article  Google Scholar 

  31. Ma, J.; Hu, P.; Cui, G. L.; Chen, L. Q. Surface and interfaceissues in spinel LiNi0.5Mn1.5O4: Insights into a potential cathode material for high energy density lithium ion batteries. Chem. Mater. 2016, 28, 3578–3606.

    Article  Google Scholar 

  32. Xu, G. J.; Liu, Z. H.; Zhang, C. J.; Cui, G. L.; Chen, L. Q. Strategies for improving the cyclability and thermo-stability of LiMn2O4-based batteries at elevated temperatures. J. Mater. Chem. A 2015, 3, 4092–4123.

    Article  Google Scholar 

  33. Zhou, L.; Zhao, D. Y.; Lou, X. LiNi0.5Mn1.5O4 hollow structures as high-performance cathodes for lithium-ion batteries. Angew. Chem., Int. Ed. 2012, 51, 239–241.

    Article  Google Scholar 

  34. Jiang, Y.; Tian, R. Y.; Liu, H. Q.; Chen, J. K.; Tan, X. H.; Zhang, L.; Liu, G. Y.; Wang, H. F.; Sun, L. F.; Chu, W. G. Synthesis and characterization of oriented linked LiFePO4 nanoparticles with fast electron and ion transport for highpower lithium-ion batteries. Nano Res. 2015, 8, 3803–3814.

    Article  Google Scholar 

  35. Wang, Y. Q.; Yang, Z. Z.; Qian, Y. M.; Gu, L.; Zhou, H. S. New insights into improving rate performance of lithium-rich cathode material. Adv. Mater. 2015, 27, 3915–3920.

    Article  Google Scholar 

  36. Yu, X. Q.; Lyu, Y.; Gu, L.; Wu, H. M.; Bak, S.-M.; Zhou, Y. N.; Amine, K.; Ehrlich, S. N.; Li, H.; Nam, K.-W. et al. Understanding the rate capability of high-energy-density Li-rich layered Li1.2Ni0.15Co0.1Mn0.55O2 cathode materials. Adv. Energy Mater. 2014, 4, 1300950.

    Article  Google Scholar 

  37. Wei, Z.; Zhang, W.; Wang, F.; Zhang, Q.; Qiu, B.; Han, S. J.; Xia, Y. G.; Zhu, Y. M.; Liu, Z. P. Eliminating voltage decay of lithium-rich Li1.14Mn0.54Ni0.14Co0.14O2 cathodes by controlling the electrochemical process. Chem.—Eur. J. 2015, 21, 7503–7510.

    Article  Google Scholar 

  38. Ma, J.; Zhou, Y. N.; Gao, Y. R.; Kong, Q. Y.; Wang, Z. X.; Yang, X. Q.; Chen, L. Q. Molybdenum substitution for improving the charge compensation and activity of Li2MnO3. Chem.—Eur. J. 2014, 20, 8723–8730.

    Article  Google Scholar 

  39. Zhang, J. W.; Guo, X.; Yao, S. M.; Qiu, X. P. High capacity lithium-manganese-nickel-oxide composite cathodes with low irreversible capacity loss and good cycle life for lithium ion batteries. Sci. China Chem. 2016, 59, 1479–1485.

    Article  Google Scholar 

  40. Nayak, P. K.; Grinblat, J.; Levi, M.; Levi, E.; Kim, S.; Choi, J. W.; Aurbach, D. Al doping for mitigating the capacity fading and voltage decay of layered Li and Mn-rich cathodes for Li-ion batteries. Adv. Energy Mater. 2016, 6, 1502398.

    Article  Google Scholar 

  41. Su, Y. S.; Fu, Y. Z.; Cochell, T.; Manthiram, A. A strategic approach to recharging lithium-sulphur batteries for long cycle life. Nat. Commun. 2013, 4, 2985.

    Google Scholar 

  42. Liu, M. K.; Yang, Z. B.; Sun, H.; Lai, C.; Zhao, X. S.; Peng, H. S.; Liu, T. X. A hybrid carbon aerogel with both aligned and interconnected pores as interlayer for high-performance lithium–sulfur batteries. Nano Res. 2016, 9, 3735–3746.

    Article  Google Scholar 

  43. Rahman, M. M.; Sadek, A. Z.; Sultana, I.; Srikanth, M.; Dai, X. J.; Field, M. R.; McCulloch, D. G.; Ponraj, S. B.; Chen, Y. Self-assembled V2O5 interconnected microspheres produced in a fish-water electrolyte medium as a highperformance lithium-ion-battery cathode. Nano Res. 2015, 8, 3591–3603.

    Article  Google Scholar 

  44. Wang, Z.; Jia, W.; Jiang, M. L.; Chen, C.; Li, Y. D. One-step accurate synthesis of shell controllable CoFe2O4 hollow microspheres as high-performance electrode materials in supercapacitor. Nano Res. 2016, 9, 2026–2033.

    Article  Google Scholar 

  45. You, Y.; Yu, X. Q.; Yin, Y. X.; Nam, K.-W.; Guo, Y.-G. Sodium iron hexacyanoferrate with high Na content as a Na-rich cathode material for Na-ion batteries. Nano Res. 2015, 8, 117–128.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (No. 2016YFA0202500), the National Natural Science Foundation of China (Nos. 51225204 and 21127901), and the “Strategic Priority Research Program” of the Chinese Academy of Sciences (No. XDA09010000).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu-Guo Guo, Lin Gu or Li-Jun Wan.

Electronic supplementary material

12274_2017_1489_MOESM1_ESM.pdf

Improving the structural stability of Li-rich cathode materials via reservation of cations in the Li-slab for Li-ion batteries

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, JL., Xiao, DD., Zhang, XD. et al. Improving the structural stability of Li-rich cathode materials via reservation of cations in the Li-slab for Li-ion batteries. Nano Res. 10, 4201–4209 (2017). https://doi.org/10.1007/s12274-017-1489-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1489-3

Keywords

Navigation