Skip to main content
Log in

Hot-nanoparticle-mediated fusion of selected cells

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Complete fusion of two selected cells allows for the creation of novel hybrid cells with inherited genetic properties from both original cells. Alternatively, via fusion of a selected cell with a selected vesicle, chemicals or genes can be directly delivered into the cell of interest, to control cellular reactions or gene expression. Here, we demonstrate how to perform an optically controlled fusion of two selected cells or of one cell and one vesicle. Fusion is mediated by laser irradiating plasmonic gold nanoparticles optically trapped between two cells (or a vesicle and a cell) of interest. This hot-particle-mediated fusion causes total mixing of the two cytoplasms and the two cell membranes resulting in formation of a new hybrid cell with an intact cell membrane and enzymatic activity following fusion. Similarly, fusion between a vesicle and a cell results in delivery of the vesicle cargo to the cytoplasm, and after fusion, the cell shows signs of viability. The method is an implementation of targeted drug delivery at the single-cell level and has a great potential for cellular control and design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Martens, S.; McMahon, H. T. Mechanisms of membrane fusion: Disparate players and common principles. Nat. Rev. Mol. Cell Biol. 2008, 9, 543–556.

    Article  Google Scholar 

  2. Chen, Y. A.; Scheller, R. H. SNARE-mediated membrane fusion. Nat. Rev. Mol. Cell Biol. 2001, 2, 98–106.

    Article  Google Scholar 

  3. Pérez-Vargas, J.; Krey, T.; Valansi, C.; Avinoam, O.; Haouz, A.; Jamin, M.; Raveh-Barak, H.; Podbilewicz, B.; Rey, F. A. Structural basis of eukaryotic cell-cell fusion. Cell 2014, 157, 407–419.

    Article  Google Scholar 

  4. Brouwer, I.; Giniatullina, A.; Laurens, N.; van Weering, J. R. T.; Bald, D.; Wuite, G. J. L.; Groffen, A. J. Direct quantitative detection of Doc2b-induced hemifusion in optically trapped membranes. Nat. Commun. 2015, 6, 8387.

    Article  Google Scholar 

  5. Weber, T.; Zemelman, B. V.; McNew, J. A.; Westermann, B.; Gmachl, M.; Parlati, F.; Söllner, T. H.; Rothman, J. E. SNAREpins: Minimal machinery for membrane fusion. Cell 1998, 92, 759–772.

    Article  Google Scholar 

  6. Floyd, D. L.; Ragains, J. R.; Skehel, J. J.; Harrison, S. C.; van Oijen, A. M. Single-particle kinetics of influenza virus membrane fusion. Proc. Natl. Acad. Sci. USA 2008, 105, 15382–15387.

    Article  Google Scholar 

  7. Estes, D. J.; Lopez, S. R.; Fuller, A. O.; Mayer, M. Triggering and visualizing the aggregation and fusion of lipid membranes in microfluidic chambers. Biophys. J. 2006, 91, 233–243.

    Article  Google Scholar 

  8. Longo, M. L.; Waring, A. J.; Hammer, D. A. Interaction of the influenza hemagglutinin fusion peptide with lipid bilayers: Area expansion and permeation. Biophys. J. 1997, 73, 1430–1439.

    Article  Google Scholar 

  9. Chakraborty, H.; Mondal, S.; Sarkar, M. Membrane fusion: A new function of non steroidal anti-inflammatory drugs. Biophys. Chem. 2008, 137, 28–34.

    Article  Google Scholar 

  10. Ohki, S. Effects of divalent cations, temperature, osmotic pressure gradient, and vesicle curvature on phosphatidylserine vesicle fusion. J. Membr. Biol. 1984, 77, 265–275.

    Article  Google Scholar 

  11. Wilschut, J.; Duezguenes, N.; Papahadjopoulos, D. Calcium/ magnesium specificity in membrane fusion: Kinetics of aggregation and fusion of phosphatidylserine vesicles and the role of bilayer curvature. Biochemistry 1981, 20, 3126–3133.

    Article  Google Scholar 

  12. van Lengerich, B.; Rawle, R. J.; Bendix, P. M.; Boxer, S. G. Individual vesicle fusion events mediated by lipid-anchored DNA. Biophys. J. 2013, 105, 409–419.

    Article  Google Scholar 

  13. Rawle, R. J.; van Lengerich, B.; Chung, M.; Bendix, P. M.; Boxer, S. G. Vesicle fusion observed by content transfer across a tethered lipid bilayer. Biophys. J. 2011, 101, L37–L39.

    Article  Google Scholar 

  14. Haluska, C. K.; Riske, K. A.; Marchi-Artzner, V.; Lehn, J. M.; Lipowsky, R.; Dimova, R. Time scales of membrane fusion revealed by direct imaging of vesicle fusion with high temporal resolution. Proc. Natl. Acad. Sci. USA 2006, 103, 15841–15846.

    Article  Google Scholar 

  15. Saito, A. C.; Ogura, T.; Fujiwara, K.; Murata, S.; Nomura, S.-I. M. Introducing micrometer-sized artificial objects into live cells: A method for cell–giant unilamellar vesicle electrofusion. PLoS One 2014, 9, e106853.

    Article  Google Scholar 

  16. Robinson, T.; Verboket, P. E.; Eyer, K.; Dittrich, P. S. Controllable electrofusion of lipid vesicles: Initiation and analysis of reactions within biomimetic containers. Lab Chip 2014, 14, 2852–2859.

    Article  Google Scholar 

  17. Yeheskely-Hayon, D.; Minai, L.; Golan, L.; Dann, E. J.; Yelin, D. Optically induced cell fusion using bispecific nanoparticles. Small 2013, 9, 3771–3777.

    Article  Google Scholar 

  18. Rørvig-Lund, A.; Bahadori, A.; Semsey, S.; Bendix, P. M.; Oddershede, L. B. Vesicle fusion triggered by optically heated gold nanoparticles. Nano Lett. 2015, 15, 4183–4188.

    Article  Google Scholar 

  19. Bendix, P. M.; Jauffred, L.; Norregaard, K.; Oddershede, L. B. Optical trapping of nanoparticles and quantum dots. IEEE J. Sel. Top. Quant. 2014, 20, 4800112.

    Google Scholar 

  20. Richardson, A. C.; Reihani, N.; Oddershede, L. B. Combing confocal microscopy with precise force-scope optical tweezers. In Proceedings of SPIE 6326, Optical Trapping and Optical Micromanipulation III, San Diego, California, USA, 2006.

    Google Scholar 

  21. Reihani, S. N. S.; Mir, S. A.; Richardson, A. C.; Oddershede, L. B. Significant improvement of optical traps by tuning standard water immersion objectives. J. Opt. 2011, 13, 105301.

    Article  Google Scholar 

  22. Hansen, P. M.; Bhatia, V. K.; Harrit, N.; Oddershede, L. Expanding the optical trapping range of gold nanoparticles. Nano Lett. 2005, 5, 1937–1942.

    Article  Google Scholar 

  23. Bendix, P. M.; Reihani, S. N. S.; Oddershede, L. B. Direct measurements of heating by electromagnetically trapped gold nanoparticles on supported lipid bilayers. ACS Nano 2010, 4, 2256–2262.

    Article  Google Scholar 

  24. Kyrsting, A.; Bendix, P. M.; Stamou, D. G.; Oddershede, L. B. Heat profiling of three-dimensionally optically trapped gold nanoparticles using vesicle cargo release. Nano Lett. 2011, 11, 888–892.

    Article  Google Scholar 

  25. Kaneshiro, E. S.; Wyder, M. A.; Wu, Y.-P.; Cushion, M. T. Reliability of calcein acetoxy methyl ester and ethidium homodimer or propidium iodide for viability assessment of microbes. J. Microbiol. Meth. 1993, 17, 1–16.

    Article  Google Scholar 

  26. Gatti, R.; Belletti, S.; Orlandini, G.; Bussolati, O.; Dall'Asta, V.; Gazzola, G. C. Comparison of annexin V and calcein- AM as early vital markers of apoptosis in adherent cells by confocal laser microscopy. J. Histochem. Cytochem. 1998, 46, 895–900.

    Article  Google Scholar 

  27. Stockert, J. C.; Blázquez-Castro, A.; Cañete, M.; Horobin, R. W.; Villanueva, Á. MTT assay for cell viability: Intracellular localization of the formazan product is in lipid droplets. Acta Histochem. 2012, 114, 785–796.

    Article  Google Scholar 

  28. Liu, Y.; Peterson, D. A.; Kimura, H.; Schubert, D. Mechanism of cellular 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction. J. Neurochem. 1997, 69, 581–593.

    Article  Google Scholar 

  29. Ogle, B. M.; Cascalho, M.; Platt, J. L. Biological implications of cell fusion. Nat. Rev. Mol. Cell Biol. 2005, 6, 567–575.

    Article  Google Scholar 

  30. Gong, J. L.; Nikrui, N.; Chen, D. S.; Koido, S.; Wu, Z. K.; Tanaka, Y.; Cannistra, S.; Avigan, D.; Kufe, D. Fusions of human ovarian carcinoma cells with autologous or allogeneic dendritic cells induce antitumor immunity. J. Immunol. 2000, 165, 1705–1711.

    Article  Google Scholar 

  31. Giordano-Santini, R.; Linton, C.; Hilliard, M. A. Cell-cell fusion in the nervous system: Alternative mechanisms of development, injury, and repair. Semin. Cell Dev. Biol., in press, DOI: 10.1016/j.semcdb.2016.06.019.

  32. Vassilopoulos, G.; Wang, P. R.; Russell, D. W. Transplanted bone marrow regenerates liver by cell fusion. Nature 2003, 422, 901–904.

    Article  Google Scholar 

  33. Jang, H. S.; Hong, Y. J.; Choi, H. W.; Song, H.; Byun, S. J.; Uhm, S. J.; Seo, H. G.; Do, J. T. Changes in parthenogenetic imprinting patterns during reprogramming by cell fusion. PLoS One 2016, 11, e0156491.

    Article  Google Scholar 

  34. Bendix, P. M.; Oddershede, L. B. Expanding the optical trapping range of lipid vesicles to the nanoscale. Nano Lett. 2011, 11, 5431–5437.

    Article  Google Scholar 

  35. Oyama, K.; Arai, T.; Isaka, A.; Sekiguchi, T.; Itoh, H.; Seto, Y.; Miyazaki, M.; Itabashi, T.; Ohki, T.; Suzuki, M. et al. Directional bleb formation in spherical cells under temperature gradient. Biophys. J. 2015, 109, 355–364.

    Article  Google Scholar 

  36. Biondi, O.; Motta, S.; Mosesso, P. Low molecular weight polyethylene glycol induces chromosome aberrations in Chinese hamster cells cultured in vitro. Mutagenesis 2002, 17, 261–264.

    Article  Google Scholar 

  37. Baffou, G.; Berto, P.; Bermúdez Ureña, E.; Quidant, R.; Monneret, S.; Polleux, J.; Rigneault, H. Photoinduced heating of nanoparticle arrays. ACS Nano 2013, 7, 6478–6488.

    Article  Google Scholar 

  38. Pott, T.; Bouvrais, H.; Méléard, P. Giant unilamellar vesicle formation under physiologically relevant conditions. Chem. Phys. Lipids 2008, 154, 115–119.

    Article  Google Scholar 

  39. Estes, D. J.; Mayer, M. Giant liposomes in physiological buffer using electroformation in a flow chamber. Biochim. Biophys. Acta 2005, 1712, 152–160.

    Article  Google Scholar 

  40. Montes, L. R.; Alonso, A.; Goñi, F. M.; Bagatolli, L. A. Giant unilamellar vesicles electroformed from native membranes and organic lipid mixtures under physiological conditions. Biophys. J. 2007, 93, 3548–3554.

    Article  Google Scholar 

  41. Weinberger, A.; Tsai, F.-C.; Koenderink, G. H.; Schmidt, T. F.; Itri, R.; Meier, W.; Schmatko, T.; Schröder, A.; Marques, C. Gel-assisted formation of giant unilamellar vesicles. Biophys. J. 2013, 105, 154–164.

    Article  Google Scholar 

  42. Luby-Phelps, K. Cytoarchitecture and physical properties of cytoplasm: Volume, viscosity, diffusion, intracellular surface area. Int. Rev. Cytol. 2000, 192, 189–221.

    Article  Google Scholar 

  43. Fujiwara, T.; Ritchie, K.; Murakoshi, H.; Jacobson, K.; Kusumi, A. Phospholipids undergo hop diffusion in compartmentalized cell membrane. J. Cell Biol. 2002, 157, 1071–1082.

    Article  Google Scholar 

  44. Andersen, T.; Kyrsting, A.; Bendix, P. M. Local and transient permeation events are associated with local melting of giant liposomes. Soft Matter 2014, 10, 4268–4274.

    Article  Google Scholar 

  45. Li, M.; Lohmuller, T.; Feldmann, J. Optical injection of gold nanoparticles into living cells. Nano Lett. 2015, 15, 770–775.

    Article  Google Scholar 

  46. McDougall, C.; Stevenson, D. J.; Brown, C. T. A.; Gunn-Moore, F.; Dholakia, K. Targeted optical injection of gold nanoparticles into single mammalian cells. J. Biophotonics 2009, 2, 736–743.

    Article  Google Scholar 

  47. Andersen, T.; Bahadori, A.; Ott, D.; Kyrsting, A.; Reihani, S. N.; Bendix, P. M. Nanoscale phase behavior on flat and curved membranes. Nanotechnology 2014, 25, 505101.

    Article  Google Scholar 

  48. Pan, J. J.; Heberle, F. A.; Tristram-Nagle, S.; Szymanski, M.; Koepfinger, M.; Katsaras, J.; Kučerka, N. Molecular structures of fluid phase phosphatidylglycerol bilayers as determined by small angle neutron and X-ray scattering. Biochim. Biophys. Acta 2012, 1818, 2135–2148.

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from the Lundbeck Foundation, the Villum Kann Rasmussen Foundation (No. VKR022593), the Danish Council for Independent Research DFF–4181-00196, from the Danish National Research Foundation (No. DNRF116) and from the Novo Nordisk Foundation (No. NNF14OC0011361).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lene B. Oddershede or Poul M. Bendix.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bahadori, A., Oddershede, L.B. & Bendix, P.M. Hot-nanoparticle-mediated fusion of selected cells. Nano Res. 10, 2034–2045 (2017). https://doi.org/10.1007/s12274-016-1392-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-1392-3

Keywords

Navigation