Skip to main content
Log in

Atomic origin of the traps in memristive interface

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

In recent years, trap-related interfacial transport phenomena have received great attention owing to their potential applications in resistive switching devices and photo detectors. Not long ago, one new type of memristive interface that is composed of F-doped SnO2 and Bi2S3 nano-network layers has demonstrated a bivariate-continuous-tunable resistance with a swift response comparable to the one in neuron synapses and with a brain-like memorizing capability. However, the resistive mechanism is still not clearly understood because of lack of evidence, and the limited improvement in the development of the interfacial device. By combining IV characterization, electron energy-loss spectroscopy, and first-principle calculation, we studied in detail the macro/micro features of the memristive interface using experimental and theoretical methods, and confirmed that its atomic origin is attributed to the traps induced by O-doping. This implies that impurity-doping might be an effective strategy for improving switching features and building new interfacial memristors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Strukov, D. B.; Snider, G. S.; Stewart, D. R.; Williams, R. S. The missing memristor found. Nature 2008, 453, 80–83.

    Article  Google Scholar 

  2. Yang, J. J.; Pickett, M. D.; Li, X. M.; Ohlberg, D. A. A.; Stewart, D. R.; Williams, R. S. Memristive switching mechanism for metal/oxide/metal nanodevices. Nat. Nanotechnol. 2008, 3, 429–433.

    Article  Google Scholar 

  3. Jo, S. H.; Chang, T.; Ebong, I.; Bhadviya, B. B.; Mazumder, P.; Lu, W. Nanoscale memristor device as synapse in neuromorphic systems. Nano Lett. 2010, 10, 1297–1301.

    Article  Google Scholar 

  4. Pan, F.; Gao, S.; Chen, C.; Song, C.; Zeng, F. Recent progress in resistive random access memories: Materials, switching mechanisms, and performance. Mater. Sci. Eng. R: Rep. 2014, 83, 1–59.

    Article  Google Scholar 

  5. Lu, W.; Lieber, C. M. Nanoelectronics from the bottom up. Nat. Mater. 2007, 6, 841–850.

    Article  Google Scholar 

  6. Tian, Y.; Guo, C. F.; Guo, S. M.; Yu, T. F.; Liu, Q. Bivariate-continuous-tunable interface memristor based on Bi2S3 nested nano-networks. Nano Res. 2014, 7, 953–962.

    Article  Google Scholar 

  7. Tian, Y.; Zhang, J. M.; Guo, C. F.; Zhang, B. S.; Liu, Q. Photoconductive probing of the trap distribution in switchable interfaces. Nanoscale 2016, 8, 915–920.

    Article  Google Scholar 

  8. Liu, Q.; Guan, W. H.; Long, S. B.; Jia, R.; Liu, M.; Chen, J. N. Resistive switching memory effect of ZrO2 films with Zr+ implanted. Appl. Phys. Lett. 2008, 92, 012117.

    Article  Google Scholar 

  9. Wu, X.; Zhou, P.; Li, J.; Chen, L. Y.; Lv, H. B.; Lin, Y. Y.; Tang, T. A. Reproducible unipolar resistance switching in stoichiometric ZrO2 films. Appl. Phys. Lett. 2007, 90, 183507.

    Article  Google Scholar 

  10. Gao, S.; Song, C.; Chen, C.; Zeng, F.; Pan, F. Dynamic processes of resistive switching in metallic filament-based organic memory devices. J. Phys. Chem. C 2012, 116, 17955–17959.

    Article  Google Scholar 

  11. Peng, S. S.; Zhuge, F.; Chen, X. X.; Zhu, X. J.; Hu, B. L.; Pan, L.; Chen, B.; Li, R.-W. Mechanism for resistive switching in an oxide-based electrochemical metallization memory. Appl. Phys. Lett. 2012, 100, 072101.

    Article  Google Scholar 

  12. Yu, Z. H.; Guo, L.; Du, H.; Krauss, T.; Silcox, J. Shell distribution on colloidal CdSe/ZnS quantum dots. Nano Lett. 2005, 5, 565–570.

    Article  Google Scholar 

  13. Wang, M.; Wang, C.; Tian, Y.; Zhang, J. M.; Guo, C. F.; Zhang, X. Z.; Liu, Q. Study on optical and electric properties of ultrafine-grained indium films. Appl. Surf. Sci. 2014, 296, 209–213.

    Article  Google Scholar 

  14. Guo, C. F.; Zhang, J. M.; Tian, Y.; Liu, Q. A general strategy to superstructured networks and nested self-similar networks of bismuth compounds. ACS Nano 2012, 6, 8746–8752.

    Article  Google Scholar 

  15. Tian, Y.; Guo, C. F.; Guo, Y. J.; Wang, Q.; Liu, Q. BiOCl nanowire with hierarchical structure and its Raman features. Appl. Surf. Sci. 2012, 258, 1949–1954.

    Article  Google Scholar 

  16. Tian, Y.; Guo, C. F.; Zhang, J. M.; Liu, Q. Operable persistent photoconductivity of Bi2S3 nested nano networks. Phys. Chem. Chem. Phys. 2015, 17, 851–857.

    Article  Google Scholar 

  17. Ahire, R. R.; Sankapal, B. R.; Lokhande, C. D. Preparation and characterization of Bi2S3 thin films using modified chemical bath deposition method. Mater. Res. Bull. 2001, 36, 199–210.

    Article  Google Scholar 

  18. Lo, C. C.; Hsieh, T. E. The influences of oxygen incorporation on the defect trap states of a-IGZO thin-film transistors. ECS Trans. 2012, 45, 239–243.

    Article  Google Scholar 

  19. Ji, W. Y.; Jing, P. T.; Xu, W.; Yuan, X.; Wang, Y. J.; Zhao, J. L.; Jen, A. K.-Y. High color purity ZnSe/ZnS core/shell quantum dot based blue light emitting diodes with an inverted device structure. Appl. Phys. Lett. 2013, 103, 053106.

    Article  Google Scholar 

  20. Na-Phattalung, S.; Smith, M. F.; Kim, K.; Du, M.-H.; Wei, S.-H.; Zhang, S. B.; Limpijumnong, S. First-principles study of native defects in anatase TiO2. Phys. Rev. B 2006, 73, 125205.

    Article  Google Scholar 

  21. Xiao, H. B.; Yang, C. P.; Huang, C.; Xu, L. F.; Shi, D. W.; Marchenkov, V. V.; Medvedeva, I. V.; Bärner, K. Influence of oxygen vacancy on the electronic structure of CaCu3Ti4O12 and its deep-level vacancy trap states by first-principle calculation. J. Appl. Phys. 2012, 111, 063713.

    Article  Google Scholar 

  22. Monthus, C. Localization properties of the anomalous diffusion phase in the directed trap model and in the Sinai diffusion with a bias. Phys. Rev. E 2003, 67, 046109.

    Article  Google Scholar 

  23. Liu, E. K.; Zhu, B. S.; Luo, J. S. Semiconductor Physics, 6th ed.; Publishing House of Electronics Industry: Beijing, 2003.

    Google Scholar 

  24. Lampert, M. A.; Mark, P. Current Injection in Solids; Academic Press: New York, 1970.

    Google Scholar 

  25. Ge, Z.-H.; Zhang, B.-P.; Shang, P.-P.; Yu, Y.-Q.; Chen, C.; Li, J.-F. Enhancing thermoelectric properties of polycrystalline Bi2S3 by optimizing a ball-milling process. J. Electron. Mater. 2011, 40, 1087–1094.

    Article  Google Scholar 

  26. Sun, B.; Zhao, W. X.; Liu, Y. H.; Chen, P. Resistive switching effect of Ag/MoS2/FTO device. Funct. Mater. Lett. 2015, 8, 1550010.

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Key Research Program of China (No. 2016YFA0200403), National Natural Science Foundation of China (Nos. 10974037 and 11547163), the CAS Strategy Pilot program (No. XAD 09020300), Hunan Provincial Natural Science Foundation of China (No. 2015JJ6015) and Science and technology project of Yiyang (No. 2015JZ29). Y. T. thanks for the fellowship from the China Scholarship Council (CSC, No. 201508430266).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qian Liu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, Y., Pan, L., Guo, C.F. et al. Atomic origin of the traps in memristive interface. Nano Res. 10, 1924–1931 (2017). https://doi.org/10.1007/s12274-016-1376-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-1376-3

Keywords

Navigation