Skip to main content
Log in

Graphene-carbon nanotube hybrid films for high-performance flexible photodetectors

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Graphene is being actively explored as a candidate material for flexible and stretchable devices. However, the development of graphene-based flexible photonic devices, i.e. photodetectors, is hindered by the low absorbance of the single layer of carbon atoms. Recently, van der Waals bonded carbon nanotube and graphene hybrid films have demonstrated excellent photoresponsivity, and the use of vein-like carbon nanotube networks resulted in significantly higher mechanical strength. Here, we report for the first time, a flexible photodetector with a high photoresponsivity of ~ 51 A/W and a fast response time of ~ 40 ms over the visible range, revealing the unique potential of this emerging all-carbon hybrid films for flexible devices. In addition, the device exhibits good robustness against repetitive bending, suggesting its applicability in large-area matrix-array flexible photodetectors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Avouris, P.; Freitag, M.; Perebeinos, V. Carbon-nanotube photonics and optoelectronics. Nat. Photonics 2008, 2, 341–350.

    Article  Google Scholar 

  2. Bonaccorso, F.; Sun, Z.; Hasan, T.; Ferrari, A. C. Graphene photonics and optoelectronics. Nat. Photonics 2010, 4, 611–622.

    Article  Google Scholar 

  3. Meunier, V.; Souza Filho, A. G.; Barros, E. B.; Dresselhaus, M. S. Physical properties of low-dimensional sp2-based carbon nanostructures. Rev. Mod. Phys. 2016, 88, 025005.

    Article  Google Scholar 

  4. Itkis, M. E.; Niyogi, S.; Meng, M. E.; Hamon, M. A.; Hu, H.; Haddon, R. C. Spectroscopic study of the Fermi level electronic structure of single-walled carbon nanotubes. Nano Lett. 2002, 2, 155–159.

    Article  Google Scholar 

  5. Falvo, M. R.; Clary, G. J.; Taylor, R. M., 2nd.; Chi, V.; Brooks, F. P., Jr.; Washburn, S.; Superfine, R. Bending and buckling of carbon nanotubes under large strain. Nature 1997, 389, 582–584.

    Article  Google Scholar 

  6. Lee, C.; Wei, X. D.; Kysar, J. W.; Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 2008, 321, 385–388.

    Article  Google Scholar 

  7. Wu, Z. C.; Chen, Z. H.; Du, X.; Logan, J. M.; Sippel, J.; Nikolou, M.; Kamaras, K.; Reynolds, J. R.; Tanner, D. B.; Hebard, A. F. et al. Transparent, conductive carbon nanotube films. Science 2004, 305, 1273–1276.

    Article  Google Scholar 

  8. Zhang, X. B.; Yu, Z. B.; Wang, C.; Zarrouk, D.; Seo, J. W. T.; Cheng, J. C.; Buchan, A. D.; Takei, K.; Zhao, Y.; Ager, J. W. et al. Photoactuators and motors based on carbon nanotubes with selective chirality distributions. Nat. Commun. 2014, 5, 2983.

    Google Scholar 

  9. Li, X. S.; Cai, W. W.; An, J.; Kim, S.; Nah, J.; Yang, D. X.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E. et al. Largearea synthesis of high-quality and uniform graphene films on copper foils. Science 2009, 324, 1312–1314.

    Article  Google Scholar 

  10. van der Zande, A. M.; Barton, R. A.; Alden, J. S.; Ruiz-Vargas, C. S.; Whitney, W. S.; Pham, P. H. Q.; Park, J.; Parpia, J. M.; Craighead, H. G.; McEuen, P. L. Large-scale arrays of single-layer graphene resonators. Nano Lett. 2010, 10, 4869–4873.

    Article  Google Scholar 

  11. Dürkop, T.; Getty, S. A.; Cobas, E.; Fuhrer, M. S. Extraordinary mobility in semiconducting carbon nanotubes. Nano Lett. 2004, 4, 35–39.

    Article  Google Scholar 

  12. Buldum, A.; Lu, J. P. Contact resistance between carbon nanotubes. Phys. Rev. B 2001, 63, 161403.

    Article  Google Scholar 

  13. Nirmalraj, P. N.; Lyons, P. E.; De, S.; Coleman, J. N.; Boland, J. J. Electrical connectivity in single-walled carbon nanotube networks. Nano Lett. 2009, 9, 3890–3895.

    Article  Google Scholar 

  14. Lyons, P. E.; De, S.; Blighe, F.; Nicolosi, V.; Pereira, L. F. C.; Ferreira, M. S.; Coleman, J. N. The relationship between network morphology and conductivity in nanotube films. J. Appl. Phys. 2008, 104, 044302.

    Article  Google Scholar 

  15. Snow, E. S.; Novak, J. P.; Campbell, P. M.; Park, D. Random networks of carbon nanotubes as an electronic material. Appl. Phys. Lett. 2003, 82, 2145–2147.

    Article  Google Scholar 

  16. Itkis, M. E.; Borondics, F.; Yu, A. P.; Haddon, R. C. Bolometric infrared photoresponse of suspended singlewalled carbon nanotube films. Science 2006, 312, 413–416.

    Article  Google Scholar 

  17. Xia, F. N.; Mueller, T.; Lin, Y. M.; Valdes-Garcia, A.; Avouris, P. Ultrafast graphene photodetector. Nat. Nanotechnol. 2009, 4, 839–843.

    Article  Google Scholar 

  18. Koppens, F. H. L.; Mueller, T.; Avouris, P., Ferrari, A. C.; Vitiello, M. S.; Polini, M. Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat. Nanotechnol. 2014, 9, 780–793.

    Article  Google Scholar 

  19. Lv, R. T.; Cruz-Silva, E.; Terrones, M. Building complex hybrid carbon architectures by covalent interconnections: Graphene-nanotube hybrids and more. ACS Nano 2014, 8, 4061–4069.

    Article  Google Scholar 

  20. Yan, Z.; Peng, Z. W.; Casillas, G.; Lin, J.; Xiang, C. S.; Zhou, H. Q.; Yang, Y.; Ruan, G. D.; Raji, A.-R. O.; Samuel, E. L. G. et al. Rebar graphene. ACS Nano 2014, 8, 5061–5068.

    Article  Google Scholar 

  21. Li, X. L.; Sha, J. W.; Lee, S. K.; Li, Y. L.; Ji, Y. S.; Zhao, Y. J.; Tour, J. M. Rivet graphene. ACS Nano 2016, 10, 7307–7313.

    Article  Google Scholar 

  22. Lin, X. Y.; Liu, P.; Wei, Y.; Li, Q. Q.; Wang, J. P.; Wu, Y.; Feng, C.; Zhang, L. N.; Fan, S. S.; Jiang, K. L. Development of an ultra-thin film comprised of a graphene membrane and carbon nanotube vein support. Nat. Commun. 2013, 4, 2920.

    Google Scholar 

  23. Liu, Y. D.; Wang, F. Q.; Wang, X. M.; Wang, X. Z.; Flahaut, E.; Liu, X. L.; Li, Y.; Wang, X. R.; Xu, Y. B.; Shi, Y. et al. Planar carbon nanotube-graphene hybrid films for high-performance broadband photodetectors. Nat. Commun. 2015, 6, 8589.

    Article  Google Scholar 

  24. Shi, J. D.; Li, X. M.; Cheng, H. Y.; Liu, Z. J.; Zhao, L. Y.; Yang, T. T.; Dai, Z. H.; Cheng, Z. G.; Shi, E. Z.; Yang, L. et al. Graphene reinforced carbon nanotube networks for wearable strain sensors. Adv. Funct. Mater. 2016, 26, 2078–2084.

    Article  Google Scholar 

  25. Konstantatos, G.; Badioli, M.; Gaudreau, L.; Osmond, J.; Bernechea, M.; Garcia de Arquer, F. P.; Gatti, F.; Koppens, F. H. L. Hybrid graphene-quantum dot phototransistors with ultrahigh gain. Nat. Nanotechnol. 2012, 7, 363–368.

    Article  Google Scholar 

  26. Liu, Y. D.; Wang, F. Q.; Liu, Y. J.; Wang, X. Z.; Xu, Y. B.; Zhang, R. Charge transfer at carbon nanotube-graphene van der Waals heterojunctions. Nanoscale 2016, 8, 12883–12886.

    Article  Google Scholar 

  27. Huang, L.; Huang, Y.; Liang, J. J.; Wan, X. J.; Chen, Y. S. Graphene-based conducting inks for direct inkjet printing of flexible conductive patterns and their applications in electric circuits and chemical sensors. Nano Res. 2011, 4, 675–684.

    Article  Google Scholar 

  28. Akinwande, D.; Petrone, N.; Hone, J. Two-dimensional flexible nanoelectronics. Nat. Commun. 2014, 5, 5678.

    Article  Google Scholar 

  29. Wang, K.; Wu, H. P.; Meng, Y. N.; Zhang, Y. J.; Wei, Z. X. Integrated energy storage and electrochromic function in one flexible device: An energy storage smart window. Energy Environ. Sci. 2012, 5, 8384–8389.

    Article  Google Scholar 

  30. Yeh, M. H.; Lin, L.; Yang, P.-K.; Wang, Z. L. Motion-driven electrochromic reactions for self-powered smart window system. ACS Nano 2015, 9, 4757–4765.

    Article  Google Scholar 

  31. Kim, D.-H.; Lu, N. S.; Ma, R.; Kim, Y.-S.; Kim, R.-H.; Wang, S. D.; Wu, J.; Won, S. M.; Tao, H.; Islam, A. et al. Epidermal electronics. Science 2011, 333, 838–843.

    Article  Google Scholar 

  32. Liang, Y.; Wang, Z.; Huang, J.; Cheng, H. H.; Zhao, F.; Hu, Y.; Jiang, L.; Qu, L. T. Series of in-fiber graphene supercapacitors for flexible wearable devices. J. Mater. Chem. A 2015, 3, 2547–2551.

    Article  Google Scholar 

  33. Nathan, A.; Ahnood, A.; Cole, M. T.; Suzuki, Y.; Hiralal, P.; Bonaccorso, F.; Hasan, T.; Garcia-Gancedo, L.; Dyadyusha, A.; Haque, S. et al. Flexible electronics: The next ubiquitous platform. Proc. IEEE 2012, 100, 1486–1517.

    Article  Google Scholar 

  34. Kholmanov, I. N.; Magnuson, C. W.; Piner, R.; Kim, J. Y.; Aliev, A. E.; Tan, C.; Kim, T. Y.; Zakhidov, A. A.; Sberveglieri, G.; Baughman, R. H. et al. Optical, electrical, and electromechanical properties of hybrid graphene/carbon nanotube films. Adv. Mater. 2015, 27, 3053–3059.

    Article  Google Scholar 

  35. Xiao, L.; Ma, H.; Liu, J. K.; Zhao, W.; Jia, Y.; Zhao, Q.; Liu, K.; Wu, Y.; Wei, Y.; Fan, S. S. et al. Fast adaptive thermal camouflage based on flexible VO2/graphene/CNT thin films. Nano Lett. 2015, 15, 8365–8370.

    Article  Google Scholar 

  36. Pirkle, A.; Chan, J.; Venugopal, A.; Hinojos, D.; Magnuson, C. W.; McDonnell, S.; Colombo, L.; Vogel, E. M.; Ruoff, R. S.; Wallace, R. M. The effect of chemical residues on the physical and electrical properties of chemical vapor deposited graphene transferred to SiO2. Appl. Phys. Lett. 2011, 99, 122108.

    Article  Google Scholar 

  37. Sun, Z. H.; Chang, H. X. Graphene and graphene-like twodimensional materials in photodetection: Mechanisms and methodology. ACS Nano 2014, 8, 4133–4156.

    Article  Google Scholar 

  38. Liu, Y. L.; Yu, C. C.; Lin, K. T.; Yang, T. C.; Wang, E. Y.; Chen, H. L.; Chen, L. C.; Chen, K. H. Transparent, broadband, flexible, and bifacial-operable photodetectors containing a large-area graphene-gold oxide heterojunction. ACS Nano 2015, 9, 5093–5103.

    Article  Google Scholar 

  39. Withers, F.; Yang, H.; Britnell, L.; Rooney, A. P.; Lewis, E.; Felten, A.; Woods, C. R.; Romaguera, V. S.; Georgiou, T.; Eckmann, A. et al. Heterostructures produced from nanosheetbased inks. Nano Lett. 2014, 14, 3987–3992.

    Article  Google Scholar 

  40. Finn, D. J.; Lotya, M.; Cunningham, G.; Smith, R. J.; McCloskey, D.; Donegan, J. F.; Coleman, J. N. Inkjet deposition of liquid-exfoliated graphene and MoS2 nanosheets for printed device applications. J. Mater. Chem. C 2014, 2, 925–932.

    Article  Google Scholar 

  41. Amani, M.; Burke, R. A.; Proie, R. M.; Dubey, M. Flexible integrated circuits and multifunctional electronics based on single atomic layers of MoS2 and graphene. Nanotechnology 2015, 26, 115202.

    Article  Google Scholar 

  42. De Fazio, D.; Goykhman, I.; Yoon, D.; Bruna, M.; Eiden, A.; Milana, S.; Sassi, U.; Barbone, M.; Dumcenco, D.; Marinov, K. et al. High responsivity, large-area graphene/MoS2 flexible photodetectors. ACS Nano 2016, 10, 8252–8262.

    Article  Google Scholar 

  43. Britnell, L.; Ribeiro, R. M.; Eckmann, A.; Jalil, R.; Belle, B. D.; Mishchenko, A.; Kim, Y. J.; Gorbachev, R. V.; Georgiou, T.; Morozov, S. V. et al. Strong light-matter interactions in heterostructures of atomically thin films. Science 2013, 340, 1311–1314.

    Article  Google Scholar 

  44. Liu, N.; Tian, H.; Schwartz, G.; Tok, J. B. H.; Ren, T. L.; Bao, Z. N. Large-area, transparent, and flexible infrared photodetector fabricated using p–n junctions formed by N-doping chemical vapor deposition grown graphene. Nano Lett. 2014, 14, 3702–3708.

    Article  Google Scholar 

  45. Sun, Z. H.; Liu, Z. K.; Li, J. H.; Tai, G. A.; Lau, S. P.; Yan, F. Infrared photodetectors based on CVD-grown graphene and PbS quantum dots with ultrahigh responsivity. Adv. Mater. 2012, 24, 5878–5883.

    Article  Google Scholar 

  46. Son, D. I.; Yang, H. Y.; Kim, T. W.; Park, W. I. Transparent and flexible ultraviolet photodetectors based on colloidal ZnO quantum dot/graphene nanocomposites formed on poly(ethylene terephthalate) substrates. Compos. Part B: Eng. 2015, 69, 154–158.

    Article  Google Scholar 

  47. Chen, G.; Liang, B.; Liu, Z.; Yu, G.; Xie, X. M.; Luo, T.; Xie, Z.; Chen, D.; Zhu, M.-Q.; Shen, G. Z. High performance rigid and flexible visible-light photodetectors based on aligned X(In, Ga)P nanowire arrays. J. Mater. Chem. C 2014, 2, 1270–1277.

    Article  Google Scholar 

  48. Zhang, W. J.; Chiu, M. H.; Chen, C. H.; Chen, W.; Li, L. J.; Wee, A. T. S. Role of metal contacts in high-performance phototransistors based on WSe2 monolayers. ACS Nano 2014, 8, 8653–8661.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Basic Research Program of China (No. 2014CB921101); the National Natural Science Foundation of China (Nos. 61378025, 61427812, 61274102, and 61504056); Jiangsu Province Shuangchuang Team Program. Y. D. L. acknowledges funding of International Postdoctoral Exchange Fellowship Program (No. 20150023), the China Postdoctoral Science Foundation (No. 2014M551558) and Jiangsu Planned Projects for Postdoctoral Research Funds (No. 1402028B).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fengqiu Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Liu, Y., Qin, S. et al. Graphene-carbon nanotube hybrid films for high-performance flexible photodetectors. Nano Res. 10, 1880–1887 (2017). https://doi.org/10.1007/s12274-016-1370-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-1370-9

Keywords

Navigation