Skip to main content
Log in

Multilayered flexible nanocomposite for hybrid nanogenerator enabled by conjunction of piezoelectricity and triboelectricity

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

We fabricate a flexible hybrid nanogenerator (HNG), based on multilayered nanocomposite materials, which integrates a piezoelectric nanogenerator (PENG) and a triboelectric nanogenerator (TENG) into a single structure with only two electrodes. The HNG enables enhancement of the electrical output of the nanogenerators. An open-circuit voltage of 280 V and a short-circuit current of 25 μA are achieved by a HNG of 2.5 cm × 2.5 cm in size, superior to the performance of previously reported HNGs. In addition, the energy-conversion process of the HNG relies on the working mechanism of both the PENG and TENG. The polarization direction and doping content of BTO are the two major factors that affect the electrical output. Biomechanical energy harvesting from walking motion or the bending of an arm is also demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang, Z. L.; Song, J. H. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 2006, 312, 242–246.

    Article  Google Scholar 

  2. Fan, F. R.; Tian, Z. Q.; Wang, Z. L. Flexible triboelectric generator. Nano Energy 2012, 1, 328–334.

    Article  Google Scholar 

  3. Qi, Y.; McAlpine, M. C. Nanotechnology-enabled flexible and biocompatible energy harvesting. Energy Environ. Sci. 2010, 3, 1275–1285.

    Article  Google Scholar 

  4. Lee, K. Y.; Gupta, M. K.; Kim, S.-W. Transparent flexible stretchable piezoelectric and triboelectric nanogenerators for powering portable electronics. Nano Energy 2015, 14, 139–160.

    Article  Google Scholar 

  5. Zhang, X. S.; Han, M. D.; Meng, B.; Zhang, H. X. High performance triboelectric nanogenerators based on large-scale mass-fabrication technologies. Nano Energy 2015, 11, 304–322.

    Article  Google Scholar 

  6. Meng, B.; Tang, W.; Too, Z. H.; Zhang, X. S.; Han, M. D.; Liu, W.; Zhang, H. X. A transparent single-friction-surface triboelectric generator and self-powered touch sensor. Energy Environ. Sci. 2013, 6, 3235–3240.

    Article  Google Scholar 

  7. Wang, Z. L.; Chen, J.; Lin, L. Progress in triboelectric nanogenerators as a new energy technology and selfpowered sensors. Energy Environ. Sci. 2015, 8, 2250–2282.

    Article  Google Scholar 

  8. Seung, W.; Gupta, M. K.; Lee, K. Y.; Shin, K. S.; Lee, J. H.; Kim, T. Y.; Kim, S.; Lin, J.; Kim, J. H.; Kim, S.-W. Nanopatterned textile-based wearable triboelectric nanogenerator. ACS Nano 2015, 9, 3501–3509.

    Article  Google Scholar 

  9. Zhu, G.; Chen, J.; Zhang, T. J.; Jing, Q. S.; Wang, Z. L. Radial-arrayed rotary electrification for high performance triboelectric generator. Nat. Commun. 2014, 5, 3426.

    Google Scholar 

  10. Shin, S.-H.; Kwon, Y. H.; Kim, Y.-H.; Jung, J.-Y.; Lee, M. H.; Nah, J. Triboelectric charging sequence induced by surface functionalization as a method to fabricate high performance triboelectric generators. ACS Nano 2015, 9, 4621–4627.

    Article  Google Scholar 

  11. Zi, Y. L.; Lin, L.; Wang, J.; Wang, S. H.; Chen, J.; Fan, X.; Yang, P.-K.; Yi, F.; Wang, Z. L. Triboelectric–pyroelectric–piezoelectric hybrid cell for high-efficiency energy-harvesting and self-powered sensing. Adv. Mater. 2015, 27, 2340–2347.

    Article  Google Scholar 

  12. Jung, W.-S.; Kang, M.-G.; Moon, H. G.; Baek, S.-H.; Yoon, S.-J.; Wang, Z. L.; Kim, S.-W.; Kang, C.-Y. High output piezo/triboelectric hybrid generator. Sci. Rep. 2015, 5, 9309.

    Article  Google Scholar 

  13. Wang, J.; Wen, Z.; Zi, Y. L.; Zhou, P. F.; Lin, J.; Guo, H. Y.; Xu, Y. L.; Wang, Z. L. All-plastic-materials based self-charging power system composed of triboelectric nanogenerators and supercapacitors. Adv. Funct. Mater. 2016, 26, 1070–1076.

    Article  Google Scholar 

  14. Wang, S. H.; Wang, Z. L.; Yang, Y. A one-structure-based hybridized nanogenerator for scavenging mechanical and thermal energies by triboelectric–piezoelectric–pyroelectric effects. Adv. Mater. 2016, 28, 2881–2887.

    Article  Google Scholar 

  15. Shi, B. J.; Zheng, Q.; Jiang, W.; Yan, L.; Wang, X. X.; Liu, H.; Yao, Y.; Li, Z.; Wang, Z. L. A packaged self-powered system with universal connectors based on hybridized nanogenerators. Adv. Mater. 2016, 28, 846–852.

    Article  Google Scholar 

  16. Kimura, Y.; Mizusawa, N.; Ishii, A.; Yamanari, T.; Ono, T. Changes of low-frequency vibrational modes induced by universal 15N- and 13C-isotope labeling in S2/S1 FTIR difference spectrum of oxygen-evolving complex. Biochemistry 2003, 42, 13170–13177.

    Article  Google Scholar 

  17. Garczarek, F.; Gerwert, K. Functional waters in intraprotein proton transfer monitored by FTIR difference spectroscopy. Nature 2006, 439, 109–112.

    Article  Google Scholar 

  18. Zeng, Z. H.; Jin, H.; Chen, M. J.; Li, W. W.; Zhou, L. C.; Zhang, Z. Lightweight and anisotropic porous MWCNT/ WPU composites for ultrahigh performance electromagnetic interference shielding. Adv. Funct. Mater. 2016, 26, 303–310.

    Article  Google Scholar 

  19. Shin, M. K.; Oh, J.; Lima, M.; Kozlov, M. E.; Kim, S. J.; Baughman, R. H. Elastomeric conductive composites based on carbon nanotube forests. Adv. Mater. 2010, 22, 2663–2667.

    Article  Google Scholar 

  20. Liu, C.-X.; Choi, J.-W. Patterning conductive PDMS nanocomposite in an elastomer using microcontact printing. J. Micromech. Microeng. 2009, 19, 085019.

    Article  Google Scholar 

  21. Amjadi, M.; Pichitpajongkit, A.; Lee, S.; Ryu, S.; Park, I. Highly stretchable and sensitive strain sensor based on silver nanowire-elastomer nanocomposite. ACS Nano 2014, 8, 5154–5163.

    Article  Google Scholar 

  22. Imai, A.; Nagarajan, V.; Takahashi, R.; Lippmaa, M.; Matsumoto, Y. Self-template growth of ferroelectric Bi4Ti3O12 nanoplates via flux-mediated epitaxy with VOx. Cryst. Growth Des. 2010, 10, 5233–5237.

    Article  Google Scholar 

  23. Gu, H. S.; Hu, Z. L.; Hu, Y. M.; Yuan, Y.; You, J.; Zou, W. D. The structure and photoluminescence of Bi4Ti3O12 nanoplates synthesized by hydrothermal method. Colloid. Surf. A 2008, 315, 294–298.

    Article  Google Scholar 

  24. Chen, X. H.; Hu, J. Q.; Chen, Z. W.; Feng, X. M.; Li, A. Q. Nanoplated bismuth titanate sub-microspheres for protein immobilization and their corresponding direct electrochemistry and electrocatalysis. Biosens. Bioelectron. 2009, 24, 3448–3454.

    Article  Google Scholar 

  25. Wang, F.; Wang, J. B.; Zhong, X. L.; Li, B.; Liu, J.; Wu, D.; Mo, D.; Guo, D. Y.; Yuan, S. G.; Zhang, K. D. et al. Shape-controlled hydrothermal synthesis of ferroelectric Bi4Ti3O12 nanostructures. CrystEngComm 2013, 15, 1397–1403.

    Article  Google Scholar 

  26. Chen, Z. W.; He, X. H. Low-temperature preparation of nanoplated bismuth titanate microspheres by a sol–gelhydrothermal method. J. Alloy. Compd. 2010, 497, 312–315.

    Article  Google Scholar 

  27. Han, M. D.; Chen, X. X.; Yu, B. C.; Zhang, H. X. Coupling of piezoelectric and triboelectric effects: From theoretical analysis to experimental verification. Adv. Electron. Mater. 2015, 1, 1500187.

    Article  Google Scholar 

  28. Park, K.-I.; Lee, M.; Liu, Y.; Moon, S.; Hwang, G.-T.; Zhu, G.; Kim, J. E.; Kim, S. O.; Kim, D. K.; Wang, Z. L. et al. Flexible nanocomposite generator made of BaTiO3 nanoparticles and graphitic carbons. Adv. Mater. 2012, 24, 2999–3004.

    Article  Google Scholar 

  29. Park, K.-I.; Jeong, C. K.; Ryu, J.; Hwang, G.-T.; Lee, K. J. Flexible and large-area nanocomposite generators based on lead zirconate titanate particles and carbon nanotubes. Adv. Energy. Mater. 2013, 3, 1539–1544.

    Article  Google Scholar 

  30. Meng, X. S.; Zhu, G.; Wang, Z. L. Robust thin-film generator based on segmented contact electrification for harvesting wind energy. ACS Appl. Mater. Interfaces 2014, 6, 8011–8016.

    Article  Google Scholar 

  31. Chandrashekar, B. N.; Deng, B.; Smitha, A. S.; Chen, Y. B.; Tan, C. W.; Zhang, H. X.; Peng, H. L.; Liu, Z. F. Rollto- roll green transfer of CVD graphene onto plastic for a transparent and flexible triboelectric nanogenerator. Adv. Mater. 2015, 27, 5210–5216.

    Article  Google Scholar 

  32. Kim, H.-J.; Kim, J.-H.; Jun, K.-W.; Kim, J.-H.; Seung, W.-C.; Kwon, O. H.; Park, J.-Y.; Kim, S.-W.; Oh, I.-K. Silk nanofiber-networked bio-triboelectric generator: Silk bio-TEG. Adv. Energy Mater. 2016, 6, 1502329.

    Article  Google Scholar 

  33. Wang, Y.-L.; Wang, X.-Y.; Chu, L.-Z.; Deng, Z.-C.; Liang, W.-H.; Liu, B.-T.; Fu, G.-S.; Wongdamnern, N.; Sareein, T.; Yimnirun, R. Simulation of hysteresis loops for polycrystalline ferroelectrics by an extensive Landau-type model. Phys. Lett. A 2009, 373, 4282–4286.

    Article  Google Scholar 

  34. Chen, B.; Zuo, Z. H.; Liu, Y. W.; Zhan, Q.-F.; Xie, Y. L.; Yang, H. L.; Dai, G. H.; Li, Z. X.; Xu, G. J.; Li, R.-W. Tunable photovoltaic effects in transparent Pb(Zr0.53, Ti0.47)O3 capacitors. Appl. Phys. Lett. 2012, 100, 173903.

    Article  Google Scholar 

  35. Niu, S. M.; Wang, X. F.; Yi, F.; Zhou, Y. S.; Wang, Z. L. A universal self-charging system driven by random biomechanical energy for sustainable operation of mobile electronics. Nat. Commun. 2015, 6, 8975.

    Article  Google Scholar 

  36. Yang, P.-K.; Lin, L.; Yi, F.; Li, X. H.; Pradel, K. C.; Zi, Y. L.; Wu, C.-I.; He, J.-H.; Zhang, Y.; Wang, Z. L. A flexible, stretchable and shape-adaptive approach for versatile energy conversion and self-powered biomedical monitoring. Adv. Mater. 2015, 27, 3817–3824.

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the Chinese “thousands talents” program for pioneer researcher and by the National Natural Science Foundation of China (No. 51572030), Beijing Natural Science Foundation (No. 2162047), and Chongqing Natural Science and Foundation (No. cstc2016jcyjA0621).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhong Lin Wang or Guang Zhu.

Electronic supplementary material

12274_2016_1331_MOESM1_ESM.pdf

Multilayered flexible nanocomposite for hybrid nanogenerator enabled by conjunction of piezoelectricity and triboelectricity

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Su, L., Kuang, S. et al. Multilayered flexible nanocomposite for hybrid nanogenerator enabled by conjunction of piezoelectricity and triboelectricity. Nano Res. 10, 785–793 (2017). https://doi.org/10.1007/s12274-016-1331-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-1331-3

Keywords

Navigation