Skip to main content
Log in

In situ TEM observation of dissolution and regrowth dynamics of MoO2 nanowires under oxygen

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Direct observation of the dissolution behavior of nanomaterials could provide fundamental insight to understanding their anisotropic properties and stability. The dissolution mechanism in solution and vacuum has been well documented. However, the gas-involved dissolution and regrowth have seldom been explored and the mechanisms remain elusive. We report herein, an in situ TEM study of the dissolution and regrowth dynamics of MoO2 nanowires under oxygen using environmental transmission electron microscopy (ETEM). For the first time, oscillatory dissolution on the nanowire tip is revealed, and, intriguingly, simultaneous layer-by-layer regrowth on the sidewall facets is observed, leading to a shorter and wider nanowire. Combined with first-principles calculations, we found that electron beam irradiation caused oxygen loss in the tip facets, which resulted in changing the preferential growth facets and drove the morphology reshaping.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dai, Z. R.; Pan, Z. W.; Wang, Z. L. Novel nanostructures of functional oxides synthesized by thermal evaporation. Adv. Funct. Mater. 2003, 13, 9–24.

    Article  Google Scholar 

  2. Patzke, G. R.; Zhou, Y.; Kontic, R.; Conrad, F. Oxide nanomaterials: Synthetic developments, mechanistic studies, and technological innovations. Angew. Chem. Int. Ed. 2011, 50, 826–859.

    Article  Google Scholar 

  3. Zhuang, Z. B.; Peng, Q.; Li, Y. D. Controlled synthesis of semiconductor nanostructures in the liquid phase. Chem. Soc. Rev. 2011, 40, 5492–5513.

    Article  Google Scholar 

  4. Wang, Y.; Chen, Y. G.; Nan, C. Y.; Li, L. L.; Peng, Q.; Li, Y. D. Phase-transfer interface promoted corrosion from PtNi10 nanoctahedra to Pt4Ni nanoframes. Nano Res. 2015, 8, 140–155.

    Article  Google Scholar 

  5. Zhou, K. B.; Li, Y. D. Catalysis based on nanocrystals with well-defined facets. Angew. Chem., Int. Ed. 2012, 51, 602–613.

    Article  Google Scholar 

  6. Xie, S. F.; Liu X. Y.; Xia Y. N. Shape-controlled syntheses of rhodium nanocrystals for the enhancement of their catalytic properties. Nano Res. 2015, 8, 82–96.

    Article  Google Scholar 

  7. Xu, T.; Sun, L. T. Dynamic in-situ experimentation on nanomaterials at the atomic scale. Small 2015, 11, 3247–3262.

    Article  Google Scholar 

  8. Peng, X. G. An essay on synthetic chemistry of colloidal nanocrystals. Nano Res. 2009, 2, 425–447.

    Article  Google Scholar 

  9. Ross, F. M. Controlling nanowire structures through real time growth studies. Rep. Prog. Phys. 2010, 73, 114501.

    Article  Google Scholar 

  10. Jiang, Y.; Li, H. B.; Wu, Z. M.; Ye, W. Y.; Zhang, H.; Wang, Y.; Sun, C. H.; Zhang, Z. In situ observation of hydrogen-induced surface faceting for palladium-copper nanocrystals at atmospheric pressure. Angew. Chem., Int. Ed. 2016, 128, 12615–12618.

    Article  Google Scholar 

  11. Zhang, Z. F.; Wang, Y.; Li, H. B.; Yuan, W. T.; Zhang, X. F.; Sun, C. H.; Zhang, Z. Atomic-scale observation of vaporsolid nanowire growth via oscillatory mass transport. ACS Nano 2015, 10, 763–769.

    Article  Google Scholar 

  12. Rackauskas, S.; Jiang, H.; Wagner, J. B.; Shandakov, S. D.; Hansen, T. W.; Kauppinen, E. I.; Nasibulin, A. G. In situ study of noncatalytic metal oxide nanowire growth. Nano Lett. 2014, 14, 5810–5813.

    Article  Google Scholar 

  13. Jacobsson, D.; Panciera, F.; Tersoff, J.; Reuter, M. C.; Lehmann, S.; Hofmann, S.; Dick, K. A.; Ross, F. M. Interface dynamics and crystal phase switching in GaAs nanowires. Nature 2016, 531, 317–322.

    Article  Google Scholar 

  14. Chou, Y. C.; Hillerich, K.; Tersoff, J.; Reuter, M. C.; Dick, K. A.; Ross, F. M. Atomic-scale variability and control of III-V nanowire growth kinetics. Science 2014, 343, 281–284.

    Article  Google Scholar 

  15. Yuan, L.; Wang, Y. Q.; Mema, R.; Zhou, G. W. Driving force and growth mechanism for spontaneous oxide Nanowire formation during the thermal oxidation of metals. Acta Mater. 2011, 59, 2491–2500.

    Article  Google Scholar 

  16. Liao, H. G.; Zherebetskyy, D.; Xin, H. L.; Czarnik, C.; Ercius, P.; Elmlund, H.; Pan, M.; Wang, L. W.; Zheng, H. M. Facet development during platinum nanocube growth. Science 2014, 345, 916–919.

    Article  Google Scholar 

  17. Xiong, Y. J.; Chen, J. Y.; Wiley, B.; Xia, Y. N.; Aloni, S.; Yin, Y. D. Understanding the role of oxidative etching in the polyol synthesis of Pd nanoparticles with uniform shape and size. J. Am. Chem. Soc. 2005, 127, 7332–7333.

    Article  Google Scholar 

  18. Lim, S. J.; Kim, W.; Jung, S.; Seo, J.; Shin, S. K. Anisotropic etching of semiconductor nanocrystals. Chem. Mater. 2011, 23, 5029–5036.

    Article  Google Scholar 

  19. Wu, Y. E.; Wang, D. S.; Niu, Z. Q.; Chen, P. C.; Zhou, G.; Li, Y. D. A strategy for designing a concave Pt-Ni alloy through controllable chemical etching. Angew. Chem., Int. Ed. 2012, 51, 12524–12528.

    Article  Google Scholar 

  20. Zhang, H.; Jin, M. S.; Wang, J. G.; Li, W. Y.; Camargo, P. H. C.; Kim, M. J.; Yang, D. R.; Xie, Z. X.; Xia, Y. N. Synthesis of Pd-Pt bimetallic nanocrystals with a concave structure through a bromide-induced galvanic replacement reaction. J. Am. Chem. Soc. 2011, 133, 6078–6089.

    Article  Google Scholar 

  21. Yu, H. D.; Yang, D. P.; Wang, D. S.; Han, M. Y. Top-down fabrication of calcite nanoshoot arrays by crystal dissolution. Adv. Mater. 2010, 22, 3181–3184.

    Article  Google Scholar 

  22. Jiang, Y. Y.; Zhu, G. M.; Lin, F.; Zhang, H.; Jin, C. H.; Yuan, J.; Yang, D. R.; Zhang, Z. In situ study of oxidative etching of palladium nanocrystals by liquid cell electron microscopy. Nano Lett. 2014, 14, 3761–3765.

    Article  Google Scholar 

  23. Liu, Q.; Sun, J.; Lv, H. B.; Long, S. B.; Yin, K. B.; Wan, N.; Li, Y. T.; Sun, L. T.; Liu, M. Real-time observation on dynamic growth/dissolution of conductive filaments in oxideelectrolyte-based ReRAM. Adv. Mater. 2012, 24, 1844–1849.

    Article  Google Scholar 

  24. Cordeiro, M. A. L.; Crozier, P. A.; Leite, E. R. Anisotropic nanocrystal dissolution observation by in situ transmission electron microscopy. Nano Lett. 2012, 12, 5708–5713.

    Article  Google Scholar 

  25. Hudak, B. M.; Chang, Y. J.; Yu, L.; Li, G. H.; Edwards, D. N.; Guiton, B. S. Real-time observation of the solidliquid-vapor dissolution of individual tin(IV) oxide nanowires. Acs Nano 2014, 8, 5441–5448.

    Article  Google Scholar 

  26. Tokarz-Sobieraj, R.; Grybos, R.; Witko, M. Electronic structure of MoO2. DFT periodic and cluster model studies. Appl. Catal. A 2011, 391, 137–143.

    Google Scholar 

  27. Delannay, F. On the reduction of orthorhombic MoO3 to MoO2. Phys. Status Solidi A 1982, 73, 529–537.

    Article  Google Scholar 

  28. Desai, P. D. Thermodynamic properties of manganese and molybdenum. J. Phys. Chem. Ref. Data 1987, 16, 91–108.

    Article  Google Scholar 

  29. Cross, J. S. Low pressure and plasma enhanced chemical vapor deposition of molybdenum oxide films. Ph.D. Dissertation, Iowa State University, Ames, Iowa, USA, 1992.

  30. Burns, R. P.; DeMaria, G.; Drowart, J.; Grimley, R. T. Mass spectrometric investigation of the sublimation of molybdenum dioxide. J. Chem. Phys. 1960, 32, 1363–1366.

    Article  Google Scholar 

  31. Yuan, W. T.; Wang, Y.; Li, H. B.; Wu, H. L.; Zhang, Z.; Selloni, A.; Sun, C. H. Real-time observation of reconstruction dynamics on TiO2(001) surface under oxygen via an environmental transmission electron microscope. Nano Lett. 2016, 16, 132–137.

    Article  Google Scholar 

  32. Egerton, R. F.; Li, P.; Malac, M. Radiation damage in the TEM and SEM. Micron 2004, 35, 399–409.

    Article  Google Scholar 

  33. Herring, C. Some theorems on the free energies of crystal surfaces. Phys. Rev. 1951, 82, 87–93.

    Article  Google Scholar 

  34. Tersoff, J.; van der Gon, A. W. D.; Tromp, R. M. Shape oscillations in growth of small crystals. Phys. Rev. Lett. 1993, 70, 1143–1146.

    Article  Google Scholar 

  35. Oh, S. H.; Chisholm, M. F.; Kauffmann, Y.; Kaplan, W. D.; Luo, W.; Rü hle, M.; Scheu, C. Oscillatory mass transport in vapor-liquid-solid growth of sapphire nanowires. Science 2010, 330, 489–493.

    Article  Google Scholar 

  36. Gamalski, A. D.; Ducati, C.; Hofmann, S. Cyclic supersaturation and triple phase boundary dynamics in germanium nanowire growth. J. Phys. Chem. C 2011, 115, 4413–4417.

    Article  Google Scholar 

  37. Wen, C. Y.; Tersoff, J.; Hillerich, K.; Reuter, M. C.; Park, J. H.; Kodambaka, S.; Stach, E. A.; Ross, F. M. Periodically changing morphology of the growth interface in Si, Ge, and GaP nanowires. Phys. Rev. Lett. 2011, 107, 025503.

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the support of National Natural Science Foundation of China (Nos. 51390474, 11234011, and 11327901), the Ministry of Education of China (No. IRT13037) and National Young 1000 Talents Program of China. C. H. S. acknowledges the financial support from ARC Discover Project (No. DP130100268) and Future Fellowship (No. FT130100076). C. H. S. also appreciates the generous grants of CPU time from Australian National Computational Infrastructure.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chenghua Sun or Yong Wang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, W., Yu, J., Li, H. et al. In situ TEM observation of dissolution and regrowth dynamics of MoO2 nanowires under oxygen. Nano Res. 10, 397–404 (2017). https://doi.org/10.1007/s12274-016-1299-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-1299-z

Keywords

Navigation