Skip to main content
Log in

Indentation fracture toughness of single-crystal Bi2Te3 topological insulators

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Bismuth telluride (Bi2Te3) is one of the most important commercial thermoelectric materials. In recent years, the discovery of topologically protected surface states in Bi chalcogenides has paved the way for their application in nanoelectronics. Determination of the fracture toughness plays a crucial role for the potential application of topological insulators in flexible electronics and nanoelectromechanical devices. Using depth-sensing nanoindentation tests, we investigated for the first time the fracture toughness of bulk single crystals of Bi2Te3 topological insulators, grown using the Bridgman-Stockbarger method. Our results highlight one of the possible pitfalls of the technology based on topological insulators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Poudel, B.; Hao, Q.; Ma, Y.; Lan, Y.; Minnich, A.; Yu, B.; Yan, X.; Wang, D.; Muto, A.; Vashaee, D. et al. Highthermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science 2008, 320, 634–638.

    Article  Google Scholar 

  2. Hamdou, B.; Kimling, J.; Dorn, A.; Pippel, E.; Rostek, R.; Woias, P.; Nielsch, K. Thermoelectric characterization of bismuth telluride nanowires, synthesized via catalytic growth and post-annealing. Adv. Mater. 2013, 25, 239–244.

    Article  Google Scholar 

  3. Purkayastha, A.; Kim, S.; Gandhi, D. D.; Ganesan, P. G.; Borca-Tasciuc, T.; Ramanath, G. Molecularly protected bismuth telluride nanoparticles: Microemulsion synthesis and thermoelectric transport properties. Adv. Mater. 2006, 18, 2958–2963.

    Article  Google Scholar 

  4. Zhao, L. L.; Wang, X. L.; Fei, F. Y.; Wang, J. Y.; Cheng, Z. X.; Dou, S. X.; Wang, J.; Snyder, G. J. High thermoelectric and mechanical performance in highly dense Cu2-xS bulks prepared by a melt-solidification technique. J. Mater. Chem. A 2015, 3, 9432–9437.

    Article  Google Scholar 

  5. Zhao, L.-D.; Zhang, B.-P.; Li, J.-F.; Zhou, M.; Liu, W.-S.; Liu, J. Thermoelectric and mechanical properties of nano-SiC-dispersed Bi2Te3 fabricated by mechanical alloying and spark plasma sintering. J. Alloys Compd. 2008, 455, 259–264.

    Article  Google Scholar 

  6. Kraemer, D.; Poudel, B.; Feng, H.-P.; Caylor, J. C.; Yu, B.; Yan, X.; Ma, Y.; Wang, X. W.; Wang, D. Z.; Muto, A. et al. High-performance flat-panel solar thermoelectric generators with high thermal concentration. Nat. Mater. 2011, 10, 532–538.

    Article  Google Scholar 

  7. Bell, L. E. Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science 2008, 321, 1457–1461.

    Article  Google Scholar 

  8. Parker, D.; Singh, D. J. Potential thermoelectric performance from optimization of hole-doped Bi2Se3. Phys. Rev. X 2011, 1, 021005.

  9. Menke, E. J.; Brown, M. A.; Li, Q.; Hemminger, J. C.; Penner, R. M. Bismuth telluride (Bi2Te3) nanowires: Synthesis by cyclic electrodeposition/stripping, thinning by electrooxidation, and electrical power generation. Langmuir 2006, 22, 10564–10574.

    Article  Google Scholar 

  10. Nechaev, I. A.; Aguilera, I.; De Renzi, V.; di Bona, A.; Lodi Rizzini, A.; Mio, A. M.; Nicotra, G.; Politano, A.; Scalese, S.; Aliev, Z. S. et al. Quasiparticle spectrum and plasmonic excitations in the topological insulator Sb2Te3. Phys. Rev. B 2015, 91, 245123.

  11. Henk, J.; Flieger, M.; Maznichenko, I. V.; Mertig, I.; Ernst, A.; Eremeev, S. V.; Chulkov, E. V. Topological character and magnetism of the Dirac state in Mn-doped Bi2Te3. Phys. Rev. Lett. 2012, 109, 076801.

    Article  Google Scholar 

  12. Hasan, M. Z.; Xu, S. Y.; Bian, G. Topological insulators, topological superconductors and Weyl fermion semimetals: Discoveries, perspectives and outlooks. Phys. Scr. 2015, 2015, 014001.

    Article  Google Scholar 

  13. Wang, Z. H.; Qiu, R. L. J.; Lee, C. H.; Zhang, Z. D.; Gao, X. P. A. Ambipolar surface conduction in ternary topological insulator Bi2(Te1-x Sex)3 nanoribbons. ACS Nano 2013, 7, 2126–2131.

    Article  Google Scholar 

  14. Kim, D.; Cho, S.; Butch, N. P.; Syers, P.; Kirshenbaum, K.; Adam, S.; Paglione, J.; Fuhrer, M. S. Surface conduction of topological Dirac electrons in bulk insulating Bi2Se3. Nat. Phys. 2012, 8, 459–463.

    Google Scholar 

  15. Wang, Z.; Qi, X. L.; Zhang, S. C. Topological order parameters for interacting topological insulators. Phys. Rev. Lett. 2010, 105, 256803.

    Article  Google Scholar 

  16. Henk, J.; Ernst, A.; Eremeev, S. V.; Chulkov, E. V.; Maznichenko, I. V.; Mertig, I. Complex spin texture in the pure and Mn-doped topological insulator Bi2Te3. Phys. Rev. Lett. 2012, 108, 206801.

  17. Hancock, J. N.; Van Mechelen, J. L. M.; Kuzmenko, A. B.; Van Der Marel, D.; Brüne, C.; Novik, E. G.; Astakhov, G. V.; Buhmann, H.; Molenkamp, L. W. Surface state charge dynamics of a high-mobility three-dimensional topological insulator. Phys. Rev. Lett. 2011, 107, 136803.

    Article  Google Scholar 

  18. Orlita, M.; Faugeras, C.; Plochocka, P.; Neugebauer, P.; Martinez, G.; Maude, D. K.; Barra, A. L.; Sprinkle, M.; Berger, C.; de Heer, W. A. et al. Approaching the dirac point in high-mobility multilayer epitaxial graphene. Phys. Rev. Lett. 2008, 101, 267601.

  19. Morozov, S. V.; Novoselov, K. S.; Katsnelson, M. I.; Schedin, F.; Elias, D. C.; Jaszczak, J. A.; Geim, A. K. Giant intrinsic carrier mobilities in graphene and its bilayer. Phys. Rev. Lett. 2008, 100, 016602.

    Article  Google Scholar 

  20. Peng, H. L.; Dang, W. H.; Cao, J.; Chen, Y. L.; Wu, D.; Zheng, W. S.; Li, H.; Shen, Z. X.; Liu, Z. F. Topological insulator nanostructures for near-infrared transparent flexible electrodes. Nat. Chem. 2012, 4, 281–286.

    Article  Google Scholar 

  21. Sulaev, A.; Zeng, M. G.; Shen, S.-Q.; Cho, S. K.; Zhu, W. G.; Feng, Y. P.; Eremeev, S. V.; Kawazoe, Y.; Shen, L.; Wang, L. Electrically tunable in-plane anisotropic magnetoresistance in topological insulator BiSbTeSe2 nanodevices. Nano Lett. 2015, 15, 2061–2066.

    Article  Google Scholar 

  22. Lu, Y.; Guo, J. Quantum simulation of topological insulator based spin transfer torque device. Appl. Phys. Lett. 2013, 102, 073106.

    Article  Google Scholar 

  23. Williams, J. R.; Bestwick, A. J.; Gallagher, P.; Hong, S. S.; Cui, Y.; Bleich, A. S.; Analytis, J. G.; Fisher, I. R.; Goldhaber-Gordon, D. Unconventional Josephson effect in hybrid superconductor-topological insulator devices. Phys. Rev. Lett. 2012, 109, 056803.

    Article  Google Scholar 

  24. Steinberg, H.; Gardner, D. R.; Lee, Y. S.; Jarillo-Herrero, P. Surface state transport and ambipolar electric field effect in Bi2Se3 nanodevices. Nano Lett. 2010, 10, 5032–5036.

    Article  Google Scholar 

  25. Ou, J.-Y.; So, J.-K.; Adamo, G.; Sulaev, A.; Wang, L.; Zheludev, N. I. Ultraviolet and visible range plasmonics in the topological insulator Bi1.5Sb0.5Te1.8Se1.2. Nat. Commun. 2014, 5, 5139.

    Article  Google Scholar 

  26. Qiao, H.; Yuan, J.; Xu, Z. Q.; Chen, C. Y.; Lin, S. H.; Wang, Y. S.; Song, J. C.; Liu, Y.; Khan, Q.; Hoh, H. Y. et al. Broadband photodetectors based on graphene–Bi2Te3 heterostructure. ACS Nano 2015, 9, 1886–1894.

    Article  Google Scholar 

  27. Zhang, X.; Wang, J.; Zhang, S. C. Topological insulators for high-performance terahertz to infrared applications. Phys. Rev. B 2010, 82, 245107.

    Article  Google Scholar 

  28. Luo, Z.-C.; Liu, M.; Liu, H.; Zheng, X.-W.; Luo, A.-P.; Zhao, C.-J.; Zhang, H.; Wen, S.-C.; Xu, W.-C. 2 GHz passively harmonic mode-locked fiber laser by a microfiberbased topological insulator saturable absorber. Opt. Lett. 2013, 38, 5212–5215.

    Article  Google Scholar 

  29. Zhao, C. J.; Zhang, H.; Qi, X.; Chen, Y.; Wang, Z. T.; Wen, S. C.; Tang, D. Y. Ultra-short pulse generation by a topological insulator based saturable absorber. Appl. Phys. Lett. 2012, 101, 211106.

  30. Lin, Y. H.; Yang, C. Y.; Lin, S. F.; Tseng, W. H.; Bao, Q. L.; Wu, C. I.; Lin, G. R. Soliton compression of the erbiumdoped fiber laser weakly started mode-locking by nanoscale p-type Bi2Te3 topological insulator particles. Laser Phys. Lett. 2014, 11, 055107.

  31. Viti, L.; Coquillat, D.; Politano, A.; Kokh, K. A.; Aliev, Z. S.; Babanly, M. B.; Tereshchenko, O. E.; Knap, W.; Chulkov, E. V.; Vitiello, M. S. Plasma-wave terahertz detection mediated by topological insulators surface states. Nano Lett. 2016, 16, 80.

    Article  Google Scholar 

  32. Süsstrunk, R.; Huber, S. D. Observation of phononic helical edge states in a mechanical topological insulator. Science 2015, 349, 47–50.

    Article  Google Scholar 

  33. Hasan, M. Z.; Kane, C. L. Colloquium: Topological insulators. Rev. Mod. Phys. 2010, 82, 3045–3067.

    Article  Google Scholar 

  34. Wang, G.; Zhu, X. G.; Sun, Y. Y.; Li, Y. Y.; Zhang, T.; Wen, J.; Chen, X.; He, K.; Wang, L. L.; Ma, X. C. et al. Topological insulator thin films of Bi2Te3 with controlled electronic structure. Adv. Mater. 2011, 23, 2929–2932.

    Article  Google Scholar 

  35. Plucinski, L.; Mussler, G.; Krumrain, J.; Herdt, A.; Suga, S.; Grützmacher, D.; Schneider, C. M. Robust surface electronic properties of topological insulators: Bi2Te3 films grown by molecular beam epitaxy. Appl. Phys. Lett. 2011, 98, 222503.

    Article  Google Scholar 

  36. Krumrain, J.; Mussler, G.; Borisova, S.; Stoica, T.; Plucinski, L.; Schneider, C. M.; Grützmacher, D. MBE growth optimization of topological insulator Bi2Te3 films. J. Cryst. Growth 2011, 324, 115–118.

    Article  Google Scholar 

  37. Atuchin, V. V.; Golyashov, V. A.; Kokh, K. A.; Korolkov, I. V.; Kozhukhov, A. S.; Kruchinin, V. N.; Makarenko, S. V.; Pokrovsky, L. D.; Prosvirin, I. P.; Romanyuk, K. N. et al. Formation of inert Bi2Se3(0001) cleaved surface. Cryst. Growth Des. 2011, 11, 5507–5514.

    Article  Google Scholar 

  38. Tsipas, P.; Xenogiannopoulou, E.; Kassavetis, S.; Tsoutsou, D.; Golias, E.; Bazioti, C.; Dimitrakopulos, G. P.; Komninou, P.; Liang, H.; Caymax, M. et al. Observation of surface dirac cone in high-quality ultrathin epitaxial Bi2Se3 topological insulator on AlN(0001) dielectric. ACS Nano 2014, 8, 6614–6619.

    Article  Google Scholar 

  39. Jiang, Y. P.; Wang, Y. L.; Chen, M.; Li, Z.; Song, C. L.; He, K.; Wang, L. L.; Chen, X.; Ma, X. C.; Xue, Q. K. Landau quantization and the thickness limit of topological insulator thin films of Sb2Te3. Phys. Rev. Lett. 2012, 108, 016401.

    Article  Google Scholar 

  40. Hor, Y. S.; Checkelsky, J. G.; Qu, D.; Ong, N. P.; Cava, R. J. Superconductivity and non-metallicity induced by doping the topological insulators Bi2Se3 and Bi2Te3. J. Phys. Chem. Solids 2011, 72, 572–576.

    Article  Google Scholar 

  41. Golyashov, V. A.; Kokh, K. A.; Makarenko, S. V.; Romanyuk, K. N.; Prosvirin, I. P.; Kalinkin, A. V.; Tereshchenko, O. E.; Kozhukhov, A. S.; Sheglov, D. V.; Eremeev, S. V. et al. Inertness and degradation of (0001) surface of Bi2Se3 topological insulator. J. Appl. Phys. 2012, 112, 113702.

    Article  Google Scholar 

  42. Politano, A.; Caputo, M.; Nappini, S.; Bondino, F.; Magnano, E.; Aliev, Z. S.; Babanly, M. B.; Goldoni, A.; Chiarello, G.; Chulkov, E. V. Exploring the surface chemical reactivity of single crystals of binary and ternary bismuth chalcogenides. J. Phys. Chem. C 2014, 118, 21517–21522.

    Article  Google Scholar 

  43. Neupane, M.; Xu, S. Y.; Wray, L. A.; Petersen, A.; Shankar, R.; Alidoust, N.; Liu, C.; Fedorov, A.; Ji, H.; Allred, J. M. et al. Topological surface states and Dirac point tuning in ternary topological insulators. Phys. Rev. B 2012, 85, 235406.

    Article  Google Scholar 

  44. Hong, M.; Chen, Z.-G.; Yang, L.; Han, G.; Zou, J. Enhanced thermoelectric performance of ultrathin Bi2Se3 nanosheets through thickness control. Adv. Electr. Mater. 2015, 1, DOI: 10.1002/aelm.201500025.

    Google Scholar 

  45. Tasi, C.-H.; Tseng, Y.-C.; Jian, S.-R.; Liao, Y.-Y.; Lin, C.-M.; Yang, P.-F.; Chen, D.-L.; Chen, H.-J.; Luo, C.-W.; Juang, J.-Y. Nanomechanical properties of Bi2Te3 thin films by nanoindentation. J. Alloys Compd. 2015, 619, 834–838.

    Article  Google Scholar 

  46. Jian, S.-R.; Tasi, C.-H.; Huang, S.-Y.; Luo, C.-W. Nanoindentation pop-in effects of Bi2Te3 thermoelectric thin films. J. Alloys Compd. 2015, 622, 601–605.

    Article  Google Scholar 

  47. Li, G.; Gadelrab, K. R.; Souier, T.; Potapov, P. L.; Chen, G.; Chiesa, M. Mechanical properties of BixSb2-x Te3 nanostructured thermoelectric material. Nanotechnology 2012, 23, 065703.

    Article  Google Scholar 

  48. Xiong, Z. W.; An, X. Y.; Li, Z. L.; Xiao, T. T.; Chen, X. R. Phase transition, electronic, elastic and thermodynamic properties of Bi2Te3 under high pressure. J. Alloys Compd. 2014, 586, 392–398.

    Article  Google Scholar 

  49. Feng, S. K.; Li, S. M.; Fu, H. Z. First-principle calculation and quasi-harmonic Debye model prediction for elastic and thermodynamic properties of Bi2Te3. Comp. Mater. Sci. 2014, 82, 45–49.

    Article  Google Scholar 

  50. Jenkins, J. O.; Rayne, J. A.; Ure, R. W., Jr. Elastic moduli and phonon properties of Bi2Te3. Phys. Rev. B 1972, 5, 3171–3184.

    Article  Google Scholar 

  51. Standard Test Method for Measurement of Fracture Toughness; ASTM E1820-11; American Society for Testing and Materials, 2011.

  52. Standard Test Method for Linear-Elastic Plane Strain Fracture Toughness KIc of Metallic Materials; ASTM E399-09e2; American Society for Testing and Materials, 2011.

  53. Palmqvist, S. A method to determine the toughness of brittle materials, especially hard materials. Jernkontorets Ann. 1957, 141, 303–307.

    Google Scholar 

  54. Lawn, B. R.; Evans, A. G.; Marshall, D. B. Elastic/plastic indentation damage in ceramics: The median/radial crack system. J. Am. Ceram. Soc. 1980, 63, 574–581.

    Article  Google Scholar 

  55. Anstis, G. R.; Chantikul, P.; Lawn, B. R.; Marshall, D. B. A critical evaluation of indentation techniques for measuring fracture toughness: I, Direct crack measurements. J. Am. Ceram. Soc. 1981, 64, 533–538.

    Article  Google Scholar 

  56. Dukino, R. D.; Swain, M. V. Comparative measurement of indentation fracture toughness with berkovich and vickers indenters. J. Am. Ceram. Soc. 1992, 75, 3299–3304.

    Article  Google Scholar 

  57. Laugier, M. T. Palmqvist indentation toughness in WC-Co composites. J. Mater. Sci. Lett. 1987, 6, 897–900.

    Article  Google Scholar 

  58. Ouchterlony, F. Stress intensity factors for the expansion loaded star crack. Eng. Fract. Mech. 1976, 8, 447–448.

    Article  Google Scholar 

  59. Fischer-Cripps, A. C. Contact mechanics. In Nanoindentation; Springer: New York, 2011; pp 1–19.

    Chapter  Google Scholar 

  60. Oliver, W. C.; Pharr, G. M. Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. J. Mater. Res. 2004, 19, 3–20.

    Article  Google Scholar 

  61. Oliver, W. C.; Pharr, G. M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 1992, 7, 1564–1583.

    Article  Google Scholar 

  62. Manjón, F. J.; Vilaplana, R.; Gomis, O.; Pérez-González, E.; Santamaría-Pérez, D.; Marín-Borrás, V.; Segura, A.; González, J.; Rodríguez-Hernández, P.; Muñoz, A. et al. High-pressure studies of topological insulators Bi2Se3, Bi2Te3, and Sb2Te3. Phys. Status Solidi B 2013, 250, 669–676.

    Article  Google Scholar 

  63. Koukharenko, E.; Fréty, N.; Nabias, G.; Shepelevich, V. G.; Tedenac, J. C. Microstructural study of Bi2Te3 material obtained by ultrarapid quenching process route. J. Cryst. Growth 2000, 209, 773–778.

    Article  Google Scholar 

  64. Field, J. S.; Swain, M. V.; Dukino, R. D. Determination of fracture toughness from the extra penetration produced by indentation-induced pop-in. J. Mater. Res. 2003, 18, 1412–1419.

    Article  Google Scholar 

  65. Lorenz, D.; Zeckzer, A.; Hilpert, U.; Grau, P.; Johansen, H.; Leipner, H. S. Pop-in effect as homogeneous nucleation of dislocations during nanoindentation. Phys. Rev. B 2003, 67, 172101.

  66. Fischer-Cripps, A. C. Factors affecting nanoindentation test data. In Nanoindentation; Springer: New York, 2011; pp 77–104.

    Chapter  Google Scholar 

  67. Volinsky, A. A.; Vella, J. B.; Gerberich, W. W. Fracture toughness, adhesion and mechanical properties of low-K dielectric thin films measured by nanoindentation. Thin Solid Films 2003, 429, 201–210.

    Article  Google Scholar 

  68. Ritchie, R. O.; Dauskardt, R. H.; Yu, W. K.; Brendzel, A. M. Cyclic fatigue-crack propagation, stress-corrosion, and fracture-toughness behavior in pyrolytic carbon-coated graphite for prosthetic heart valve applications. J. Biomed. Mater. Res. 1990, 24, 189–206.

    Article  Google Scholar 

  69. Sakai, M.; Bradt, R. C.; Fischbach, D. B. Fracture toughness anisotropy of a pyrolytic carbon. J. Mater. Sci. 1986, 21, 1491–1501.

    Article  Google Scholar 

  70. Li, Y. Y.; Wang, G.; Zhu, X. G.; Liu, M. H.; Ye, C.; Chen, X.; Wang, Y. Y.; He, K.; Wang, L. L.; Ma, X. C. et al. Intrinsic topological insulator Bi2Te3 thin films on Si and their thickness limit. Adv. Mater. 2010, 22, 4002–4007.

    Article  Google Scholar 

  71. Zhang, Y.; He, K.; Chang, C. Z.; Song, C. L.; Wang, L. L.; Chen, X.; Jia, J. F.; Fang, Z.; Dai, X.; Shan, W. Y. et al. Crossover of the three-dimensional topological insulator Bi2Se3 to the two-dimensional limit. Nat. Phys. 2010, 6, 584–588.

    Article  Google Scholar 

  72. Liu, C. X.; Zhang, H. J.; Yan, B. H.; Qi, X. L.; Frauenheim, T.; Dai, X.; Fang, Z.; Zhang, S. C. Oscillatory crossover from two-dimensional to three-dimensional topological insulators. Phys. Rev. B 2010, 81, 041307(R).

  73. Bansal, N.; Kim, Y. S.; Brahlek, M.; Edrey, E.; Oh, S. Thickness-independent transport channels in topological insulator Bi2Se3 thin films. Phys. Rev. Lett. 2012, 109, 116804.

    Article  Google Scholar 

  74. Chiu, S. P.; Lin, J. J. Weak antilocalization in topological insulator Bi2Te3 microflakes. Phys. Rev. B 2013, 87, 035122.

  75. Zhu, W. N.; Yogeesh, M. N.; Yang, S. X.; Aldave, S. H.; Kim, J.-S.; Sonde, S.; Tao, L.; Lu, N. S.; Akinwande, D. Flexible black phosphorus ambipolar transistors, circuits and AM demodulator. Nano Lett. 2015, 15, 1883–1890.

    Article  Google Scholar 

  76. Kim, K. S.; Zhao, Y.; Jang, H.; Lee, S. Y.; Kim, J. M.; Kim, K. S.; Ahn, J.-H.; Kim, P.; Choi, J.-Y.; Hong, B. H. Largescale pattern growth of graphene films for stretchable transparent electrodes. Nature 2009, 457, 706–710.

    Article  Google Scholar 

  77. Chang, H.-Y.; Yogeesh, M. N.; Ghosh, R.; Rai, A.; Sanne, A.; Yang, S. X.; Lu, N. S.; Banerjee, S. K.; Akinwande, D. Large-area monolayer MoS2 for flexible low-power RF nanoelectronics in the GHz regime. Adv. Mater., in press, DOI: 10.1002/adma.201504309.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caterina Lamuta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lamuta, C., Cupolillo, A., Politano, A. et al. Indentation fracture toughness of single-crystal Bi2Te3 topological insulators. Nano Res. 9, 1032–1042 (2016). https://doi.org/10.1007/s12274-016-0995-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-0995-z

Keywords

Navigation