Skip to main content
Log in

Fabrication of flexible reduced graphene oxide/Fe2O3 hollow nanospheres based on-chip micro-supercapacitors for integrated photodetecting applications

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Micro-supercapacitors (MSCs) as important on-chip micropower sources have attracted considerable attention because of their unique and advantageous design for optimized maximum functionality within a minimized sized chip and excellent mechanical flexibility/stability in miniaturized portable electronic device applications. In this work, we report a novel, high-performance flexible integrated on-chip MSC based on hybrid nanostructures of reduced graphene oxide/Fe2O3 hollow nanospheres using a microelectronic photo-lithography technology combined with plasma etching technique. The unique structural design for on-chip MSCs enables high-performance enhancements compared with graphene-only devices, exhibiting high specific capacitances of 11.57 F·cm-3 at a scan rate of 200 mV·s-1 and excellent rate capability and robust cycling stability with capacitance retention of 92.08% after 32,000 charge/discharge cycles. Moreover, the on-chip MSCs exhibit superior flexibility and outstanding stability even after repetition of charge/discharge cycles under different bending states. As-fabricated highly flexible on-chip MSCs can be easily integrated with CdS nanowire-based photodetectors to form a highly compacted photodetecting system, exhibiting comparable performance to devices driven by conventional external energy storage units.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yao, S. C.; Tang, X. D.; Hsieh, C. C.; Alyousef, Y.; Vladimer, M.; Fedder, G. K.; Amon, C. H. Micro-electro-mechanical systems (MEMS)-based micro-scale direct methanol fuel cell development. Energy 2006, 31, 636–649.

    Article  Google Scholar 

  2. Patten, B.; Sánchez, I. A.; Tangney, B. Designing collaborative, constructionist and contextual applications for handheld devices. Comput. Educ. 2006, 46, 294–308.

    Article  Google Scholar 

  3. Zhang, J.; Tan, K. L.; Gong, H. Q. Characterization of the polymerization of SU-8 photoresist and its applications in micro-electro-mechanical systems (MEMS). Polym. Test. 2001, 20, 693–701.

    Article  Google Scholar 

  4. Meng, Q. H.; Wu, H. Q.; Meng, Y. N.; Xie, K.; Wei, Z. X.; Guo, Z. X. High-performance all-carbon yarn microsupercapacitor for an integrated energy system. Adv. Mater. 2014, 26, 4100–4106.

    Article  Google Scholar 

  5. Zhu, Y. G.; Wang, Y.; Shi, Y. M.; Wong, J. I.; Yang, H. Y. CoO nanoflowers woven by CNT network for high energy density flexible micro-supercapacitor. Nano Energy 2014, 3, 46–54.

    Article  Google Scholar 

  6. Sumboja, A.; Foo, C. Y.; Wang, X.; Lee, P. S. Large areal mass, flexible and free-standing reduced graphene oxide/manganese dioxide paper for asymmetric supercapacitor device. Adv. Mater. 2013, 25, 2809–2815.

    Article  Google Scholar 

  7. Rolison, D. R.; Long, J. W.; Lytle, J. C.; Fischer, A. E.; Rhodes, C. P.; McEvoy, T. M.; Bourg, M. E.; Lubers, A. M. Multifunctional 3D nanoarchitectures for energy storage and conversion. Chem. Soc. Rev. 2009, 38, 226–252.

    Article  Google Scholar 

  8. Wang, Y.; Shi, Y. M.; Zhao, C. X.; Wong, J. I.; Sun, X. W.; Yang, H. Y. Printed all-solid flexible microsupercapacitors: Towards the general route for high energy storage devices. Nanotechnology 2014, 25, 094010.

  9. Chmiola, J.; Largeot, C.; Taberna, P. L.; Simon, P.; Gogotsi, Y. Monolithic carbide-derived carbon films for microsupercapacitors. Science 2010, 328, 480–483.

    Article  Google Scholar 

  10. Pech, D.; Brunet, M.; Durou, H.; Huang, P. H.; Mochalin, V.; Gogotsi, Y.; Taberna, P.-L.; Simon, P. Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon. Nat. Nanotechnol. 2010, 5, 651–654.

    Article  Google Scholar 

  11. Gao, W.; Singh, N.; Song, L.; Liu, Z.; Reddy, A. L. M.; Ci, L. J.; Vajtai, R.; Zhang, Q.; Wei, B. Q.; Ajayan, P. M. Direct laser writing of micro-supercapacitors on hydrated graphite oxide films. Nat. Nanotechnol. 2011, 6, 496–500.

    Article  Google Scholar 

  12. El-Kady, M. F.; Kaner, R. B. Scalable fabrication of highpower graphene micro-supercapacitors for flexible and onchip energy storage. Nat. Commun. 2013, 4, 1475.

    Article  Google Scholar 

  13. Wu, Z. S.; Parvez, K.; Feng, X. L.; Müllen, K. Graphenebased in-plane micro-supercapacitors with high power and energy densities. Nat. Commun. 2013, 4, 2487.

  14. Xu, J.; Shen, G. Z. A flexible integrated photodetector system driven by on-chip microsupercapacitors. Nano Energy 2015, 13, 131–139.

    Article  Google Scholar 

  15. Lee, G.; Kim, D.; Yun, J.; Ko, Y. M.; Cho, J.; Ha, J. S. High-performance all-solid-state flexible micro-supercapacitor arrays with layer-by-layer assembled MWNT/MnOx nanocomposite electrodes. Nanoscale 2014, 6, 9655–9664.

    Article  Google Scholar 

  16. Wu, H.; Jiang, K.; Gu, S. S.; Yang, H.; Lou, Z.; Chen, D.; Shen, G. Z. Two-dimensional Ni(OH)2 nanoplates for flexible on-chip microsupercapacitors. Nano Res. 2015, 8, 3544–3552.

    Article  Google Scholar 

  17. Peng, L. L.; Peng, X.; Liu, B. R.; Wu, C. Z.; Xie, Y.; Yu, G. H. Ultrathin two-dimensional MnO2/graphene hybrid nanostructures for high-performance, flexible planar supercapacitors. Nano Lett. 2013, 13, 2151–2157.

    Article  Google Scholar 

  18. Liu, W. W.; Feng, Y. Q.; Yan, X. B.; Chen, J. T.; Xue, Q. J. Superior micro-supercapacitors based on graphene quantum dots. Adv. Funct. Mater. 2013, 23, 4111–4122.

    Article  Google Scholar 

  19. Wu, Z. K.; Lin, Z. Y.; Li, L. Y.; Song, B.; Moon, K. S.; Bai, S. L.; Wong, C. P. Flexible micro-supercapacitor based on in-situ assembled graphene on metal template at room temperature. Nano Energy 2014, 10, 222–228.

    Article  Google Scholar 

  20. Huang, P. H.; Pech, D.; Lin, R. Y.; McDonough, J. K.; Brunet, M.; Taberna, P.-L.; Gogotsi, Y.; Simon, P. On-chip micro-supercapacitors for operation in a wide temperature range. Electrochem. Commun. 2013, 36, 53–56.

    Article  Google Scholar 

  21. Xiong, G. P.; Meng, C. Z.; Reifenberger, R. G.; Irazoqui, P. P.; Fisher, T. S. A review of graphene-based electrochemical microsupercapacitors. Electroanalysis 2014, 26, 30–51.

    Article  Google Scholar 

  22. Niu, Z. Q.; Zhang, L.; Liu, L. L.; Zhu, B. W.; Dong, H. B.; Chen, X. D. All-solid-state flexible ultrathin microsupercapacitors based on graphene. Adv. Mater. 2013, 25, 4035–4042.

    Article  Google Scholar 

  23. Lin, J.; Zhang, C. G.; Yan, Z.; Zhu, Y.; Peng, Z. W.; Hauge, R. H.; Natelson, D.; Tour, J. M. 3-dimensional graphene carbon nanotube carpet-based microsupercapacitors with high electrochemical performance. Nano Lett. 2013, 13, 72-78.

  24. Lv, W.; Sun, F.; Tang, D. M.; Fang, H. T.; Liu, C.; Yang, Q. H.; Cheng, H. M. A sandwich structure of graphene and nickel oxide with excellent supercapacitive performance. J. Mater. Chem. 2011, 21, 9014–9019.

    Article  Google Scholar 

  25. Yan, J.; Wei, T.; Qiao, W. M.; Shao, B.; Zhao, Q. K.; Zhang, L. J.; Fan, Z. J. Rapid microwave-assisted synthesis of graphene nanosheet/Co3O4 composite for supercapacitors. Electrochim. Acta 2010, 55, 6973–6978.

    Article  Google Scholar 

  26. Beidaghi, M.; Wang, C. L. Micro-supercapacitors based on three dimensional interdigital polypyrrole/C-MEMS electrodes. Electrochim. Acta 2011, 56, 9508–9514.

    Article  Google Scholar 

  27. Chen, S.; Zhu, J. W.; Wang, X. One-step synthesis of graphenecobalt hydroxide nanocomposites and their electrochemical properties. J. Phys. Chem. C. 2010, 114, 11829–11834.

    Article  Google Scholar 

  28. Mahdi, N.; Golozar, M. A.; Rashed, G. Nano iron oxide (Fe2O3)/carbon black electrodes for electrochemical capacitors. Mater. Lett. 2012, 85, 40–43.

    Article  Google Scholar 

  29. Sassin, M. B.; Mansour, A. N.; Pettigrew, K. A.; Rolison, D. R.; Long, J. W. Electroless deposition of conformal nanoscale iron oxide on carbon nanoarchitectures for electrochemical charge storage. ACS Nano 2010, 4, 4505–4514.

    Article  Google Scholar 

  30. Hummers, W. S. Jr.; Offeman, R. E. Preparation of graphitic oxide. J. Am. Chem. Soc. 1958, 80, 1339.

    Article  Google Scholar 

  31. Wang, L. L.; Lou, Z.; Deng, J.; Zhang, R.; Zhang T. Ethanol gas detection using a yolk–shell (core–shell) a-Fe2O3 nanospheres as sensing material. ACS Appl. Mater. Interfaces 2015, 7, 13098–13104.

    Article  Google Scholar 

  32. Zou, Y. Q.; Wang, Y. NiO nanosheets grown on graphene nanosheets as superior anode materials for Li-ion batteries. Nanoscale 2011, 3, 2615–2620.

    Article  Google Scholar 

  33. Lu, L. Q.; Wang, Y. Sheet-like and fusiform CuO nanostructures grown on graphene by rapid microwave heating for high Li-ion storage capacities. J. Mater. Chem. 2011, 21, 17916–17921.

    Article  Google Scholar 

  34. Han, J. H.; Lin, Y. C.; Chen, L. Y.; Tsai, Y. C.; Ito, Y.; Guo, X. W.; Hirata, A.; Fujita, T.; Esashi, M.; Gessner, T. et al. On-chip micro-pseudocapacitors for ultrahigh energy and power delivery. Adv. Sci. 2015, 2, 1500067.

    Article  Google Scholar 

  35. Wang, Q. F.; Wang, X. F.; Xu, J.; Ouyang, X.; Hou, X. J.; Chen, D.; Wang, R. M.; Shen, G. Z. Flexible coaxial-type fiber supercapacitor based on NiCo2O4 nanosheets electrodes. Nano Energy 2014, 8, 44–51.

    Article  Google Scholar 

  36. Zhang, X. H.; Gong, L.; Liu, K.; Cao, Y. Z.; Xiao, X.; Sun, W. M.; Hu, X. J.; Gao, Y. H.; Chen, J.; Zhou, J. et al. Tungsten oxide nanowires grown on carbon cloth as a flexible cold cathode. Adv. Mater. 2010, 22, 5292–5296

    Article  Google Scholar 

  37. Zhu, S. J.; Zhang, J. H.; Qiao, C. Y.; Tang, S. J.; Li, Y. F.; Yuan, W. J.; Li, B.; Tian, L.; Liu, F.; Hu, R. et al. Strongly green-photoluminescent graphene quantum dots for bioimaging applications. Chem. Commun. 2011, 47, 6858–6860.

    Article  Google Scholar 

  38. Xue, M. Q.; Li, F. W.; Zhu, J.; Song, H.; Zhang, M. N.; Cao, T. B. Structure-based enhanced capacitance: In situ growth of highly ordered polyaniline nanorods on reduced graphene oxide patterns. Adv. Funct. Mater. 2012, 22, 1284–1290.

    Article  Google Scholar 

  39. Lu, X. H.; Yu, M. H.; Wang, G. M.; Zhai, T.; Xie, S. L.; Ling, Y. C.; Tong, Y. X.; Li, Y. H-TiO2@MnO2/H-TiO2@C core–shell nanowires for high performance and flexible asymmetric supercapacitors. Adv. Mater. 2013, 25, 267–272.

    Article  Google Scholar 

  40. El-Kady, M. F.; Strong, V.; Dubin, S.; Kaner, R. B. Laser scribing of high-performance and flexible graphene-based electrochemical capacitors. Science 2012, 335, 1326–1330.

    Article  Google Scholar 

  41. Chen, G.; Xie, X. M.; Shen, G. Z. Flexible organic–inorganic hybrid photodetectors with n-type phenyl-C61-butyric acid methyl ester (PCBM) and p-type pearl-like GaP nanowires. Nano Res. 2014, 7, 1777–1787.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiangdong Ma or Guozhen Shen.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, S., Lou, Z., Li, L. et al. Fabrication of flexible reduced graphene oxide/Fe2O3 hollow nanospheres based on-chip micro-supercapacitors for integrated photodetecting applications. Nano Res. 9, 424–434 (2016). https://doi.org/10.1007/s12274-015-0923-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-015-0923-7

Keywords

Navigation