Skip to main content
Log in

Expression, transcriptional regulation and functional analysis of phosphate transporter genes in plants

  • Review
  • Published:
Frontiers of Agriculture in China

Abstract

Phosphorus is one of the essential mineral nutrients required by all living cells. Phosphate mobilization into the plant is a complex process in which the absorption and translocation of this major nutrient are determined largely by the phosphate (Pi) transporters. In this paper, the recent progress on the plant phosphate (Pi) transporter genes, such as the molecular characterizations, expression patterns in response to Pi status, other inorganic nutrients, and the other factors, expression regulations via arbuscular mycorrhizal (AM) symbiosis, mechanisms of transcriptional regulation, functional identification approaches, and the gene engineering perspectives on improvement of plant phosphorus nutrition, etc., have been reviewed. The purpose of this paper is to provide a theoretical basis for further elucidation of the molecular mechanism of Pi transportation mediated by Pi transporters and to promote the generation of elite crop germplasms with a significant improvement in phosphorus use efficiency in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ai P, Sun S, Zhao J, Fan X, Xin W, Guo Q, Yu L, Shen Q, Wu P, Miller A J, Xu G (2008). Two rice phosphate transporters, OsPht1;2 and OsPht1;6, have different functions and kinetic properties in uptake and translocation. Plant J, 57(5): 798–809

    Article  PubMed  Google Scholar 

  • Baek S H, Chung I M, Yun S J (2001). Molecular cloning and characterization of a tobacco leaf cDNA encoding a phosphate transporter. Mol Cells, 11(1): 1–6

    PubMed  CAS  Google Scholar 

  • Bucher M (2007). Functional biology of plant phosphate uptake at root and mycorrhiza interfaces. New Phytol, 173(1): 11–26

    Article  PubMed  CAS  Google Scholar 

  • Catarecha P, Segura M D, Franco-Zorrilla J M, García-Ponce B, Lanza M, Solano R, Paz-Ares J, Leyva A (2007). A mutant of the Arabidopsis phosphate transporter PHT1;1 displays enhanced arsenic accumulation. Plant Cell, 19(3): 1123–1133

    Article  PubMed  CAS  Google Scholar 

  • Chapin L J, Jones M L (2009). Ethylene regulates phosphorus remobilization and expression of a phosphate transporter (PhPT1) during petunia corolla senescence. J Exp Bot, 60(7): 2179–2190

    Article  PubMed  CAS  Google Scholar 

  • Cubero B, Nakagawa Y, Jiang X Y, Miura K J, Li F, Raghothama K G, Bressan R A, Hasegawa P M, Pardo J M (2009). The phosphate transporter PHT4;6 is a determinant of salt tolerance that is localized to the Golgi apparatus of Arabidopsis. Mol Plant, 2(3): 535–552

    Article  PubMed  CAS  Google Scholar 

  • Daram P, Brunner S, Persson B L, Amrhein N, Bucher M (1998). Functional analysis and cell-specific expression of a phosphate transporter from tomato. Planta, 206(2): 225–233

    Article  PubMed  CAS  Google Scholar 

  • Daram P, Brunner S, Rausch C, Steiner C, Amrhein N, Bucher M (1999). Pht2;1 encodes a low-affinity phosphate transporter from Arabidopsis. Plant Cell, 11(11): 2153–2166

    Article  PubMed  CAS  Google Scholar 

  • Drew M C, Saker L R (1984). Uptake and long-distance transport of phosphate, potassium and chloride in relation to internal ion concentrations in barley: evidence of non-allosteric regulation. Planta, 160(6): 500–507

    Article  CAS  Google Scholar 

  • Furihata T, Suzuki M, Sakurai H (1992). Kinetic characterization of 2 phosphate-uptake systems with different affinities in suspensioncultured Catharanthus roseus protoplasts. [REMOVED HYPERLINK FIELD] Plant Cell Physiol, 33: 1151–1157

    CAS  Google Scholar 

  • Gordon-Weeks R, Tong Y, Davies T G, Leggewie G (2003). Restricted spatial expression of a high-affinity phosphate transporter in potato roots. J Cell Sci, 116(Pt 15): 3135–3144

    Article  PubMed  CAS  Google Scholar 

  • Grunwald U, Guo W, Fischer K, Isayenkov S, Ludwig-Müller J, Hause B, Yan X, Küster H, Franken P (2009). Overlapping expression patterns and differential transcript levels of phosphate transporter genes in arbuscular mycorrhizal, Pi-fertilised and phytohormonetreated Medicago truncatula roots. Planta, 229(5): 1023–1034

    Article  PubMed  CAS  Google Scholar 

  • Guo B, Jin Y, Wussler C, Blancaflor E B, Motes C M, Versaw W K (2008). Functional analysis of the Arabidopsis PHT4 family of intracellular phosphate transporters. New Phytol, 177(4): 889–898

    Article  PubMed  CAS  Google Scholar 

  • Harrison M J, Dewbre G R, Liu J (2002). A phosphate transporter from Medicago truncatula involved in the acquisition of phosphate released by arbuscular mycorrhizal fungi. Plant Cell, 14(10): 2413–2429

    Article  PubMed  CAS  Google Scholar 

  • Harrison M J, van Buuren M L (1995). A phosphate transporter from the mycorrhizal fungus Glomus versiforme. Nature, 378(6557): 626–629

    Article  PubMed  CAS  Google Scholar 

  • Hase A, Nishikoori M, Okuyama H (2004). Induction of high affinity phosphate transporter in the duckweed Spirodela oligorrhiza. Physiol Plant, 120(2): 271–279

    Article  PubMed  CAS  Google Scholar 

  • Haseloff J, Siemering K R, Prasher D C, Hodge S (1997). Removal of a cryptic intron and subcellular localization of green fluorescent protein are required to mark transgenic Arabidopsis plants brightly. Proc Natl Acad Sci USA, 94(6): 2122–2127

    Article  PubMed  CAS  Google Scholar 

  • Huang C, Barker S J, Langridge P, Smith FW, Graham R D (2000). Zinc deficiency up-regulates expression of high-affinity phosphate transporter genes in both phosphate-sufficient and -deficient barley roots. Plant Physiol, 124(1): 415–422

    Article  PubMed  CAS  Google Scholar 

  • Huang X, Zhu W, Dai S, Gai S, Zheng G, Zheng C (2008). The involvement of mitochondrial phosphate transporter in accelerating bud dormancy release during chilling treatment of tree peony (Paeonia suffruticosa). Planta, 228(4): 545–552

    Article  PubMed  CAS  Google Scholar 

  • Hürlimann H C, Pinson B, Stadler-Waibel M, Zeeman S C, Freimoser F M (2009). The SPX domain of the yeast low-affinity phosphate transporter Pho90 regulates transport activity. EMBO Rep, 10(9): 1003–1008

    Article  PubMed  Google Scholar 

  • Javot H, Penmetsa R V, Terzaghi N, Cook D R, Harrison M J, (2007). A Medicago truncatula phosphate transporter indispensable for the arbuscular mycorrhizal symbiosis. Proc Natl Acad Sci USA, 104(5): 1720–1725

    Article  PubMed  CAS  Google Scholar 

  • Jefferson R A, Kavanagh T A, Bevan M W (1987). GUS fusions: betaglucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J, 6(13): 3901–3907

    PubMed  CAS  Google Scholar 

  • Karandashov V, Bucher M (2005). Symbiotic phosphate transport in arbuscular mycorrhizas. Trends Plant Sci, 10(1): 22–29

    Article  PubMed  CAS  Google Scholar 

  • Karandashov V, Nagy R, Wegmüller S, Amrhein N, Bucher M (2004). Evolutionary conservation of a phosphate transporter in the arbuscular mycorrhizal symbiosis. Proc Natl Acad Sci USA, 101(16): 6285–6290

    Article  PubMed  CAS  Google Scholar 

  • Karthikeyan A S, Ballachanda D N, Raghothama K G (2009). Promoter deletion analysis elucidates the role of cis elements and 5’UTR intron in spatiotemporal regulation of AtPht1;4 expression in Arabidopsis. Physiol Plant, 136(1): 10–18

    Article  PubMed  CAS  Google Scholar 

  • Karthikeyan A S, Varadarajan D K, Mukatira U T, D’Urzo M P, Damsz B, Raghothama K G (2002). Regulated expression of Arabidopsis phosphate transporters. Plant Physiol, 130(1): 221–233

    Article  PubMed  CAS  Google Scholar 

  • Kiiskinen M, Korhonen M, Kangasjärvi J (1997). Isolation and characterization of cDNA for a plant mitochondrial phosphate translocator (Mpt1): ozone stress induces Mpt1 mRNA accumulation in birch (Betula pendula Roth). Plant Mol Biol, 35(3): 271–279

    Article  PubMed  CAS  Google Scholar 

  • Leggewie G, Willmitzer L, Riesmeier J W (1997). Two cDNAs from potato are able to complement a phosphate uptake-deficient yeast mutant: identification of phosphate transporters from higher plants. Plant Cell, 9(3): 381–392

    Article  PubMed  CAS  Google Scholar 

  • Li Q, Gao X, Sun Y, Zhang Q, Song R, Xu Z (2006). Isolation and characterization of a sodium-dependent phosphate transporter gene in Dunaliella viridis. Biochem Biophys Res Commun, 340(1): 95–104

    Article  PubMed  CAS  Google Scholar 

  • Liu C, Muchhal U S, Uthappa M, Kononowicz A K, Raghothama K G (1998a). Tomato phosphate transporter genes are differentially regulated in plant tissues by phosphorus. Plant Physiol, 116(1): 91–99

    Article  PubMed  CAS  Google Scholar 

  • Liu H, Trieu A T, Blaylock L A, Harrison M J (1998b). Cloning and characterization of two phosphate transporters from Medicago truncatula roots: regulation in response to phosphate and to colonization by arbuscular mycorrhizal (AM) fungi. Mol Plant Microbe Interact, 11(1): 14–22

    Article  PubMed  CAS  Google Scholar 

  • Liu J, Versaw W K, Pumplin N, Gomez S K, Blaylock L A, Harrison MJ (2008). Closely related members of the Medicago truncatula PHT1 phosphate transporter gene family encode phosphate transporters with distinct biochemical activities. J Biol Chem, 283(36): 24673–24681

    Article  PubMed  CAS  Google Scholar 

  • Lunn J E, Douce R (1993). Transport of inorganic pyrophosphate across the spinach chloroplast envelope. Biochem J, 290(Pt 2): 375–379

    PubMed  CAS  Google Scholar 

  • McPharlin I R, Bieleski R L (1987). Phosphate-uptake by Spirodela and Lemna during early phosphorus deficiency. Aust J Plant Physiol, 14: 561–572

    CAS  Google Scholar 

  • Miao J, Sun J, Liu D, Li B, Zhang A, Li Z, Tong Y (2009). Characterization of the promoter of phosphate transporter TaPHT1.2 differentially expressed in wheat varieties. J Genet Genomics, 36(8): 455–466

    Article  PubMed  CAS  Google Scholar 

  • Ming F, Lu Q, Wang W, Zhang S, Guo B, Shen D (2006). Cloning, expression and function of phosphate transporter encoded gene in Oryza sativa L.. Sci China C Life Sci, 49(5): 409–413

    Article  PubMed  CAS  Google Scholar 

  • Ming F, Mi G H, Lu Q, Yin S, Zhang S S, Guo B, Shen D L (2005). Cloning and characterization of cDNA for the Oryza sativa phosphate transporter. 28Cell Mol. Biol Lett, 10: 401–411

    CAS  Google Scholar 

  • Misson J, Thibaud M C, Bechtold N, Raghothama K, Nussaume L (2004). Transcriptional regulation and functional properties of Arabidopsis Pht1;4, a high affinity transporter contributing greatly to phosphate uptake in phosphate deprived plants. Plant Mol Biol, 55(5): 727–741

    Article  PubMed  CAS  Google Scholar 

  • Mitsukawa N, Okumura S, Shirano Y, Sato S, Kato T, Harashima S, Shibata D (1997). Overexpression of an Arabidopsis thaliana highaffinity phosphate transporter gene in tobacco cultured cells enhances cell growth under phosphate-limited conditions. Proc Natl Acad Sci USA, 94(13): 7098–7102

    Article  PubMed  CAS  Google Scholar 

  • Muchhal U S, Pardo J M, Raghothama K G (1996). Phosphate transporters from the higher plant Arabidopsis thaliana. Proc Natl Acad Sci USA, 93(19): 10519–10523

    Article  PubMed  CAS  Google Scholar 

  • Muchhal U S, Raghothama K G (1999). Transcriptional regulation of plant phosphate transporters. Proc Natl Acad Sci USA, 96(10): 5868–5872

    Article  PubMed  CAS  Google Scholar 

  • Nagy R, Karandashov V, Chague V, Kalinkevich K, Tamasloukht M, Xu G, Jakobsen I, Levy A A, Amrhein N, Bucher M (2005). The characterization of novel mycorrhiza-specific phosphate transporters from Lycopersicon esculentum and Solanum tuberosum uncovers functional redundancy in symbiotic phosphate transport in solanaceous species. Plant J, 42(2): 236–250

    Article  PubMed  CAS  Google Scholar 

  • Nagy R, Vasconcelos M J, Zhao S, McElver J, Bruce W, Amrhein N, Raghothama K G, Bucher M (2006). Differential regulation of five Pht1 phosphate transporters from maize (Zea mays L.). Plant Biol (Stuttg), 8(2): 186–197

    Article  CAS  Google Scholar 

  • Nakamori K, Takabatake R, Umehara Y, Kouchi H, Izui K, Hata S, Raghothama K G, Bucher M, Nakamori K, Takabatake R, Umehara Y, Kouchi H, Izui K, Hata S (2002). Cloning, functional expression, and mutational analysis of a cDNA for Lotus japonicus mitochondrial phosphate transporter. Plant Cell Physiol, 43(10): 1250–1253

    Article  PubMed  CAS  Google Scholar 

  • Okumura S, Mitsukawa N, Shirano Y, Shibata D (1998). Phosphate transporter gene family of Arabidopsis thaliana. DNA Res, 5(5): 261–269

    Article  PubMed  CAS  Google Scholar 

  • Ow DW, DEWet J R, Helinski D R, Howell S H, Wood K V, Deluca M (1986). Transient and stable expression of the firefly luciferase gene in plant-cells and transgenic plants. Science, 234(4778): 856–859

    Article  PubMed  CAS  Google Scholar 

  • Paszkowski U, Kroken S, Roux C, Briggs S P (2002). Rice phosphate transporters include an evolutionarily divergent gene specifically activated in arbuscular mycorrhizal symbiosis. Proc Natl Acad Sci USA, 99(20): 13324–13329

    Article  PubMed  CAS  Google Scholar 

  • Pavón L R, Lundh F, Lundin B, Mishra A, Persson B L, Spetea C (2008). Arabidopsis ANTR1 is a thylakoid Na+-dependent phosphate transporter: functional characterization in Escherichia coli. J Biol Chem, 283(20): 13520–13527

    Article  PubMed  Google Scholar 

  • Rae A L, Cybinski D H, Jarmey J M, Smith F W (2003). Characterization of two phosphate transporters from barley; evidence for diverse function and kinetic properties among members of the Pht1 family. Plant Mol Biol, 53(1–2): 27–36

    Article  PubMed  CAS  Google Scholar 

  • Rausch C, Daram P, Brunner S, Jansa J, Laloi M, Leggewie G, Amrhein N, Bucher M(2001). A phosphate transporter expressed in arbusculecontaining cells in potato. Nature, 414(6862): 462–470

    Article  PubMed  CAS  Google Scholar 

  • Rausch C, Zimmermann P, Amrhein N, Bucher M (2004). Expression analysis suggests novel roles for the plastidic phosphate transporter Pht2;1 in auto- and heterotrophic tissues in potato and Arabidopsis. Plant J, 39(1): 13–28

    Article  PubMed  CAS  Google Scholar 

  • Schünmann P H, Richardson A E, Smith F W, Delhaize E (2004a). Characterization of promoter expression patterns derived from the Pht1 phosphate transporter genes of barley (Hordeum vulgare L.). J Exp Bot, 55(398): 855–865

    Article  PubMed  Google Scholar 

  • Schünmann P H, Richardson A E, Vickers C E, Delhaize E (2004b). Promoter analysis of the barley Pht1;1 phosphate transporter gene identifies regions controlling root expression and responsiveness to phosphate deprivation. Plant Physiol, 136(4): 4205–4214

    Article  PubMed  Google Scholar 

  • Seo HM, Jung Y, Song S, Kim Y, Kwon T, Kim D H, Jeung S J, Yi Y B, Yi G, Nam M H, Nam J (2008). Increased expression of OsPT1, a high-affinity phosphate transporter, enhances phosphate acquisition in rice. Biotechnol Lett, 30(10): 1833–1838

    Article  PubMed  CAS  Google Scholar 

  • Shimogawara K, Usuda H (1995). Uptake of inorganic phosphate by suspension-cultured tobacco cells: kinetics and regulation by Pi starvation. Plant Cell Physiol, 36: 341–351

    CAS  Google Scholar 

  • Shin H, Shin H S, Dewbre G R, Harrison M J (2004). Phosphate transport in Arabidopsis: Pht1;1 and Pht1;4 play a major role in phosphate acquisition from both low- and high-phosphate environments. Plant J, 39(4): 629–642

    Article  PubMed  CAS  Google Scholar 

  • Smith FW, Ealing P M, Dong B, Delhaize E (1997). The cloning of two Arabidopsis genes belonging to a phosphate transporter family. Plant J, 11(1): 83–92

    Article  PubMed  CAS  Google Scholar 

  • Smith FW, Rae A L, Hawkesford MJ (2000). Molecular mechanisms of phosphate and sulphate transport in plants. Biochim Biophys Acta, 1465(1–2): 236–245

    PubMed  CAS  Google Scholar 

  • Stefanovic A, Ribot C, Rouached H, Wang Y, Chong J, Belbahri L, Delessert S, Poirier Y (2007). Members of the PHO1 gene family show limited functional redundancy in phosphate transfer to the shoot, and are regulated by phosphate deficiency via distinct pathways. Plant J, 50(6): 982–994

    Article  PubMed  CAS  Google Scholar 

  • Takabatake R, Hata S, Taniguchi M, Kouchi H, Sugiyama T, Izui K (1999). Isolation and characterization of cDNAs encoding mitochondrial phosphate transporters in soybean, maize, rice, and Arabidopis. Plant Mol Biol, 40(3): 479–486

    Article  PubMed  CAS  Google Scholar 

  • Tatry M V, El Kassis E, Lambilliotte R, Corratgé C, van Aarle I, Amenc L K, Alary R, Zimmermann S, Sentenac H, Plassard C (2009). Two differentially regulated phosphate transporters from the symbiotic fungus Hebeloma cylindrosporum and phosphorus acquisition by ectomycorrhizal Pinus pinaster. Plant J, 57(6): 1092–1102

    Article  PubMed  CAS  Google Scholar 

  • Tittarelli A, Milla L, Vargas F, Morales A, Neupert C, Meisel L A, Salvo G H, Peñaloza E, Muñoz G, Corcuera L J, Silva H (2007). Isolation and comparative analysis of the wheat TaPT2 promoter: identification in silico of new putative regulatory motifs conserved between monocots and dicots. J Exp Bot, 58(10): 2573–2582

    Article  PubMed  CAS  Google Scholar 

  • Vance C P, Uhde-Stone C, Allan D L (2003). Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource. New Phytol, 157(3): 423–447

    Article  CAS  Google Scholar 

  • Versaw W K, Harrison M J (2002). A chloroplast phosphate transporter, PHT2;1, influences allocation of phosphate within the plant and phosphate-starvation responses. Plant Cell, 14(8): 1751–1766

    Article  PubMed  CAS  Google Scholar 

  • Xu G H, Chague V, Melamed-Bessudo C, Kapulnik Y, Jain A, Raghothama K G, Levy A A, Silber A (2007). Functional characterization of LePT4: a phosphate transporter in tomato with mycorrhiza-enhanced expression. J Exp Bot, 58(10): 2491–2501

    Article  PubMed  CAS  Google Scholar 

  • Yu F T, Zhang A M, Chen S Y, Zhang F S (2001). Differential accumulation of the new high-affinity phosphate transporter candidated gene fragment in rice roots in response to phosphorus deficiency stress. Yi Chuan Xue Bao, 28(2): 144–151 (in Chinese)

    PubMed  CAS  Google Scholar 

  • Zeng Y J, Ying J, Liu J Z, Sun J H, Li B, Xiao H S, Li Z S (2002). Function analysis of a wheat phosphate transporter in yeast mutant. Yi Chuan Xue Bao, 29(11): 1017–1020 (in Chinese)

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Xiao.

About this article

Cite this article

Guo, C., Zhao, J., Sun, C. et al. Expression, transcriptional regulation and functional analysis of phosphate transporter genes in plants. Front. Agric. China 5, 22–30 (2011). https://doi.org/10.1007/s11703-010-1021-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11703-010-1021-y

Keywords

Navigation