Skip to main content
Log in

Response of phytoliths in Leymus chinensis to the simulation of elevated global CO2 concentrations in Songnen Grassland, China

  • Article
  • Geography
  • Published:
Chinese Science Bulletin

Abstract

Measuring the response of terrestrial ecosystems to elevated CO2 concentrations is very important for understanding the effects of global change. In this study, OTC (open top chambers) were used to simulate elevated CO2 concentrations in the Songnen Grassland. As well, phytoliths in Leymus chinensis were extracted to study the relationships between phytoliths and CO2 concentration. The results show the rondel is abundant in Leymus chinensis, while the trapeziform polylobate is rare. When phytolith production is increased, the rondel phytoliths grow bigger and the proportions of the different phytolith types changes under high CO2 concentration. These types include elongate hollow, acicular hair cell, square and laminate and are only observed in samples grown under high CO2 concentrations. All this evidence demonstrates that phytoliths in Leymus chinensis are sensitive to CO2 concentration, and indicate that phytolith analysis may have potential use in the study of global change, identifying different ecotypes of Leymus chinensis and for the reconstruction of paleoatmospheric CO2 concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Etheridge D M, Steel L P, Langenfelds R L, et al. Natural and anthropogenic changes in atmospheric CO2 over the last 1000 years from air in Antarctic ice and firn. J Geophys Res, 1996, 101: 4115–4128

    Article  Google Scholar 

  2. Keeling C D, Whorf T P. Atmospheric CO2 records from the sites in the SIO air sampling network. In: Trends: A Compendium of Data on Global Change. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, TN

  3. IPCC. Climate Change 2001: The Scientific Basis. Cambridge: Cambridge University Press, 2001

    Google Scholar 

  4. Gao S H, Guo J P. Initial study into the CO2 concentration and soil moisture effects on the photosynthesis impact mechanism of Leymus chinensis (in Chinese). Acta Prat Sin, 2004, 21: 23–26

    Google Scholar 

  5. Gao L M, Huang Y X, Lin S H. Effects of doubled CO2 concentration on the phenology and growth of Leymus chinensis (in Chinese). Environ Sci, 1999, 20: 25–29

    Google Scholar 

  6. Wang L, Yang Y F, Sun W, et al. Photosynthetic physiological response of two ecotypes of Leymus chinensis to the double concentration of CO2 (in Chinese). Acta Agr Sin, 2003, 11: 52–57

    Google Scholar 

  7. Sala O E, Chapin F S, Armesto J J, et al. Global biodiversity scenarios for the year 2100. Science, 2000, 287: 1770–1774

    Article  Google Scholar 

  8. Schroter D, Cramer W, Leemans R, et al. Ecosystem service supply and vulnerability to global change in Europe. Science, 2005, 310: 1333–1337

    Article  Google Scholar 

  9. Poorter H, Navas M L. Plant growth and competition at elevated CO2: On winners, losers and functional groups. New Phytol, 2003, 157: 175–198

    Article  Google Scholar 

  10. Bradley K L, Pregitzer K S. Ecosystem assembly and terrestrial carbon balance under elevated CO2. Trends Eco Evo, 2007, 22: 538–547

    Article  Google Scholar 

  11. Wang Y J, Lu H Y. Phytolith Study and Its Application (in Chinese). Beijing: China Ocean Press, 1993

    Google Scholar 

  12. Qin Y, Yao Z Q, Wei G F, et al. Determining the foundry area of bronze vessels from Jiuliandun tombs based on phytolith analysis of casting core residue (in Chinese). J Univ Sci Technol China, 2008, 38: 326–330

    Google Scholar 

  13. Zhang Y L, Zhang M B, Song J. Development of ancestors’ cultivation revealed in phytolith assemblages from Guangfulin relics. Chinese Sci Bull, 2003, 48: 287–290

    Article  Google Scholar 

  14. Jin G Y, Yan S D, Udatsu T, et al. Neolithic rice paddy from the Zhaojiazhuang site, Shandong, China. Chinese Sci Bull, 2007, 52: 3376–3384

    Article  Google Scholar 

  15. Piperno D R. Phytolith Analysis: An Archaeological and Geological Perspective. San Diego: Academic Press, 1988

    Google Scholar 

  16. Horrocks M, Deng Y, Ogden J, et al. A reconstruction of the history of a Holocene sand dune on Great Barrier Island, northern New Zealand, using pollen and Phytolith analyses. J Biogeogr, 2000, 27: 1269–1277

    Article  Google Scholar 

  17. Kondo R, Childs C, Atkinson L. Opal Phytoliths of New Zealand. Lincoln: Manaaki Whenua Press, 1994

    Google Scholar 

  18. Huang F, Lisa K, Xiong S F, et al. Holocene grassland vegetation, climate and human impact in central eastern Inner Mongolia. Sci China Ser D-Earth Sci, 2005, 48: 1025–1039

    Article  Google Scholar 

  19. Bremond L, Alexander A, Véla E, et al. Advantages and disadvantages of Phytoliths analysis for the reconstruction of Mediterranean vegetation: An assessment based on modern Phytolith, pollen, and botanical data (Luberon, France). Rev Palaeobot Palynol, 2004, 129: 213–228

    Article  Google Scholar 

  20. Fredlund G G, Tieszen L T. Modern Phytolith assemblages from the North American Great Plains. J Biogeogr, 1994, 21: 321–335

    Article  Google Scholar 

  21. Fredlund G G, Tieszen L T. Phytolith and carbon isotope evidence for late Quaternary vegetation and climate change in the southern Black Hills, South Dakota. Quat Res, 1997, 47: 206–217

    Article  Google Scholar 

  22. Guiot J, Harrison S P, Prentice I C. Reconstruction of Holocene precipitation patterns in Europe using pollen and lake-level data. Quat Res, 1993, 40: 139–149

    Article  Google Scholar 

  23. Iriarte J, Paz E A. Phytolith analysis of selected native plants and modern soils from southeastern Uruguay and its implications for paleoenvironmental and archeological reconstruction. Quat Int, 2009, 193: 99–123

    Article  Google Scholar 

  24. Lu H Y, Wu N Q, Liu D S, et al. Seasonal climatic variation recorded by phytolith assemblages from the Baoji loess sequence in central China over the last 150000 a. Sci China Ser D-Earth Sci, 1996, 39: 629–639

    Google Scholar 

  25. Birks H J B. Numerical tools in palaeolimnology: Progress, potentialities, and problems. J Paleolimnol, 1998, 20: 307–332

    Article  Google Scholar 

  26. Lu H Y, Wu N Q, Yang X D, et al. Phytoliths as quantitative indicators for the reconstruction of past environmental conditions in China I: Phytolith-based transfer function. Quat Sci Rev, 2006, 25: 945–959

    Article  Google Scholar 

  27. Lu H Y, Wu N Q, Yang X D, et al. Phytoliths as quantitative indicators for the reconstruction of past environmental conditions in China II: Palaeoenvironmental reconstruction in the Loess Plateau. Quat Sci Rev, 2007, 26: 759–772

    Article  Google Scholar 

  28. Prebble M, Schallenberg M, Carter J, et al. An analysis of Phytolith assemblages for the quantitative reconstruction of late Quaternary environments of the Lower Taieri Plain, Otago, South Island, Zealand I. Modern assemblages and transfer function. J Paleolimnol, 2002, 27: 393–413

    Article  Google Scholar 

  29. Prebble M, Schallenberg M, Carter J, et al. An analysis of Phytolith assemblages for the quantitative reconstruction of late Quaternary environments of the Lower Taieri Plain, Otago, South Island, Zealand II. Paleoenvironmental reconstruction. J Paleolimnol, 2002, 27: 415–427

    Article  Google Scholar 

  30. Carter J A. Atmospheric carbon isotope signatures in phytolith-occluded carbon. Quant Int, 2009, 193: 20–29

    Google Scholar 

  31. Maddlla M, Alexander A, Ball T. International code for Phytolith nomenclature 1.0. Ann Bot, 2005, 96: 253–260

    Article  Google Scholar 

  32. Piperno D R. Phytoliths: A Comprehensive Guide for Archaeologists and Paleoecologists. New York: Altamira Press, 2006. 24–27

    Google Scholar 

  33. Twiss P C, Suess E, Smith R M. Morphological classification of grass phytoliths. Soil Sci Soc Amer J, 1969, 33: 109–115

    Article  Google Scholar 

  34. Huang F, Lisa K, Huang F B. Diagnostic phytoliths from Inner Mongolia grassland (in Chinese). Acta Palaeontol Sin, 2004, 43: 246–253

    Google Scholar 

  35. Han M, Ji C J, Zuo W Y, et al. Interactive effects of elevated CO2 and temperature on the leaf anatomical characteristics of eleven species. Acta Ecol Sin, 2006, 26: 326–333

    Google Scholar 

  36. Yang S T, Li Y F, Hu Y X, et al. Effect of CO2 concentration doubling on the leaf morphology and structure of 10 species in Gramineae. Acta Bot Sin, 1997, 39: 859–866

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to DongMei Jie.

About this article

Cite this article

Ge, Y., Jie, D., Guo, J. et al. Response of phytoliths in Leymus chinensis to the simulation of elevated global CO2 concentrations in Songnen Grassland, China. Chin. Sci. Bull. 55, 3703–3708 (2010). https://doi.org/10.1007/s11434-010-4123-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-010-4123-2

Keywords

Navigation