Skip to main content
Log in

Applying the WRF Double-Moment Six-Class Microphysics Scheme in the GRAPES_Meso Model: A Case Study

  • Special Collection on Aerosol-Cloud-Radiation Interactions
  • Published:
Journal of Meteorological Research Aims and scope Submit manuscript

Abstract

This study incorporated the Weather Research and Forecasting (WRF) model double-moment 6-class (WDM6) microphysics scheme into the mesoscale version of the Global/Regional Assimilation and PrEdiction System (GRAPES_Meso). A rainfall event that occurred during 3–5 June 2015 around Beijing was simulated by using the WDM6, the WRF single-moment 6-class scheme (WSM6), and the NCEP 5-class scheme, respectively. The results show that both the distribution and magnitude of the rainfall simulated with WDM6 were more consistent with the observation. Compared with WDM6, WSM6 simulated larger cloud liquid water content, which provided more water vapor for graupel growth, leading to increased precipitation in the cold-rain processes. For areas with the warmrain processes, the sensitivity experiments using WDM6 showed that an increase in cloud condensation nuclei (CCN) number concentration led to enhanced CCN activation ratio and larger cloud droplet number concentration (Nc) but decreased cloud droplet effective diameter. The formation of more small-size cloud droplets resulted in a decrease in raindrop number concentration (Nr), inhibiting the warm-rain processes, thus gradually decreasing the amount of precipitation. For areas mainly with the cold-rain processes, the overall amount of precipitation increased; however, it gradually decreased when the CCN number concentration reached a certain magnitude. Hence, the effect of CCN number concentration on precipitation exhibits significant differences in different rainfall areas of the same precipitation event.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bae, S. Y., S.-Y. Hong, and K.-S. S. Lim, 2016: Coupling WRF double-moment 6-class microphysics schemes to RRTMG radiation scheme in weather research forecasting model. Adv. Meteor., 2016, 1–11, doi: 10.1155/2016/5070154.

    Article  Google Scholar 

  • Baker, M. B., 1997: Cloud microphysics and climate. Science, 276, 1072–1078, doi: 10.1126/science.276.5315.1072.

    Article  Google Scholar 

  • Chen, D. H., and X. S. Shen, 2006: Recent progress on GRAPES research and application. J. Appl. Meteor. Sci., 17, 773–777, doi: 10.3969/j.issn.1001-7313.2006.06.014. (in Chinese)

    Google Scholar 

  • Chen, D. H., J. S. Xue, X. S. Yang, et al., 2008: New generation of multi-scale NWP system (GRAPES): General scientific design. Chinese Sci. Bull., 53, 3433–3445, doi: 10.1007/s11434-008-0494-z.

    Google Scholar 

  • Chen, Y. D., R. Z. Zhang, D. M. Meng, et al., 2016: Variational assimilation of satellite cloud water/ice path and microphysics scheme sensitivity to the assimilation of a rainfall case. Adv. Atmos. Sci., 33, 1158–1170, doi: 10.1007/s00376-016-6004-3.

    Article  Google Scholar 

  • Clark, T. L., 1973: Numerical modeling of the dynamics and microphysics of warm cumulus convection. J. Atmos. Sci., 30, 857–878, doi: 10.1175/1520-0469(1973)030<0857:NMOTDA>2.0.CO;2.

    Article  Google Scholar 

  • Cohard, J.-M., and J.-P. Pinty, 2000a: A comprehensive twomoment warm microphysical bulk scheme. I: Description and tests. Quart. J. Roy. Meteor. Soc., 126, 1815–1842, doi: 10.1002/qj.49712656613.

    Google Scholar 

  • Cohard, J.-M., and J.-P. Pinty, 2000b: A comprehensive twomoment warm microphysical bulk scheme. II: 2D experiments with a non-hydrostatic model. Quart. J. Roy. Meteor. Soc., 126, 1843–1859, doi: 10.1002/qj.49712656614.

    Google Scholar 

  • Cotton, W. R., G. J. Tripoli, R. M. Rauber, et al., 1986: Numerical simulation of the effects of varying ice crystal nucleation rates and aggregation processes on orographic snowfall. J. Climate Appl. Meteor., 25, 1658–1680, doi: 10.1175/1520-0450(1986)025<1658:NSOTEO>2.0.CO;2.

    Article  Google Scholar 

  • Deng, Z. Z., C. S. Zhao, N. Ma, et al., 2013: An examination of parameterizations for the CCN number concentration based on in situ measurements of aerosol activation properties in the North China Plain. Atmos. Chem. Phys., 13, 145–176, doi: 10.5194/acp-13-6227-2013.

    Article  Google Scholar 

  • Dong, H., H. M. Xu, and Y. L. Luo, 2012: Effects of cloud condensation nuclei concentration on precipitation in convection permitting simulations of a squall line using WRF model: Sensitivity to cloud microphysical schemes. Chinese J. Atmos. Sci., 36, 145–169, doi: 10.3878/j.issn.1006-9895.2012.01.12. (in Chinese)

    Google Scholar 

  • Duda, J. D., X. G. Wang, F. Y. Kong, et al., 2014: Using varied microphysics to account for uncertainty in warm-season QPF in a convection-allowing ensemble. Mon. Wea. Rev., 142, 2198–2219, doi: 10.1175/MWR-D-13-00297.1.

    Article  Google Scholar 

  • Feng, Q. J., P. R. Li, M. Y. Fan, et al., 2012: Observational analysis of cloud condensation nuclei in some regions of North China. Trans. Atmos. Sci., 35, 533–540, doi: 10.3969/j.issn.1674-7097.2012.05.003. (in Chinese)

    Google Scholar 

  • Ferrier, B. S., 1994: A double-moment multiple-phase four-class bulk ice scheme. Part I: Description. J. Atmos. Sci., 51, 249–280,doi:10.1175/1520-0469(1994)051<0249:ADMMPF> 2.0.CO;2.

    Article  Google Scholar 

  • Guo, X. L., M. Y. Huang, H. Y. Xu, et al., 1999: Rain category numerical simulations of microphysical processes of precipitation formation in stratiform clouds. Chinese J. Atmos. Sci., 23, 745–752, doi: 10.3878/j.issn.1006-9895.1999.06.11. (in Chinese)

    Google Scholar 

  • Gao, W. H., F. S. Zhao, Z. J. Hu, et al., 2012: Improved CAMS cloud microphysics scheme and numerical experiment coupled with WRF model. Chinese J. Geophys., 55, 396–405, doi: 10.6038/j.issn.0001-5733.2012.02.004. (in Chinese)

    Google Scholar 

  • Guo, X. L., D. H. Fu, X. Guo, et al., 2014: A case study of aerosol impacts on summer convective clouds and precipitation over northern China. Atmos. Res., 142, 142–157, doi: 10.1016/j.atmosres.2013.10.006.

    Article  Google Scholar 

  • Hall, W. D., 1980: A detailed microphysical model within a twodimensional dynamic framework: Model description and preliminary results. J. Atmos. Sci., 37, 2486–2507, doi: 10.1175/1520-0469(1980)037<2486:ADMMWA>2.0.CO;2.

    Article  Google Scholar 

  • Hartmann, D. L., M. E. Ockert-Bell, and M. L. Michelsen, 1992: The effect of cloud type on earth’s energy balance: Global analysis. J. Climate, 5, 1281–1304, doi: 10.1175/1520-0442(1992)005<1281:TEOCTO>2.0.CO;2.

    Article  Google Scholar 

  • He, H., X. L. Guo, X. E. Liu, et al., 2016: Mesoscale numerical simulation study of warm fog dissipation by salt particles seeding. Adv. Atmos. Sci., 33, 579–592, doi: 10.1007/s00376-015-5151-2.

    Article  Google Scholar 

  • Hong, S.-Y., and J.-O. J. Lim, 2006: The WRF single-moment 6- class microphysics scheme (WSM6). J. Korean Meteor. Soc., 42, 129–151.

    Google Scholar 

  • Hong, S.-Y, K.-S. S. Lim, Y.-H. Lee, et al., 2010: Evaluation of the WRF double-moment 6-class microphysics scheme for precipitating convection. Adv. Meteor., 707253, doi: 10.1155/2010/707253.

  • Hong, Y. C., and H. Y. Li, 2011: Cloud structure, precipitation mechanism and artificial enhancement precipitation condition for a frontal stratiform cloud system. Plateau Meteor., 30, 1308–1323. (in Chinese)

    Google Scholar 

  • Hou, T.-J., H.-C. Lei, Z.-X. Hu, et al., 2013: Observations and modeling of ice water content in a mixed-phase cloud system. Atmos. Oceanic Sci. Lett., 6, 210–215, doi: 10.3878/j.issn.1674-2834.13.0020.

    Article  Google Scholar 

  • Hou, T. J., H. C. Lei, J. F. Yang, et al., 2016: Investigation of riming within mixed-phase stratiform clouds using weather research and forecasting (WRF) model. Atmos. Res., 178–179, 291–303, doi: 10.1016/j.atmosres.2016.04.007.

    Article  Google Scholar 

  • Hu, Z. J., and G. F. He, 1988: Numerical simulation of microphysical processes in cumulonimbus. Part I: Microphysical model. Acta Meteor. Sinica, 2, 471–489.

    Google Scholar 

  • Khain, A. P., and I. Sednev, 1996: Simulation of precipitation formation in the eastern Mediterranean coastal zone using a spectral microphysics cloud ensemble model. Atmos. Res., 43, 77–110, doi: 10.1016/S0169-8095(96)00005-1.

    Article  Google Scholar 

  • Khain, A., A. Pokrovsky, M. Pinsky, et al., 2004: Simulation of effects of atmospheric aerosols on deep turbulent convective clouds using a spectral microphysics mixed-phase cumulus cloud model. Part I: Model description and possible applications. J. Atmos. Sci., 61, 2963–2982, doi: 10.1175/JAS-3350.1.

    Google Scholar 

  • Khain, A., D. Rosenfeld, and A. Pokrovsky, 2005: Aerosol impact on the dynamics and microphysics of deep convective clouds. Quart. J. Roy. Meteor. Soc., 131, 2639–2663, doi: 10.1256/qj.04.62.

    Article  Google Scholar 

  • Kovačević, N., and M. Ćurić, 2015: Precipitation sensitivity to the mean radius of drop spectra: Comparison of single- and double-moment bulk microphysical schemes. Atmosphere, 6, 451–473, doi: 10.3390/atmos6040451.

    Article  Google Scholar 

  • Kogan, Y. L., 1991: The simulation of a convective cloud in a 3-D model with explicit microphysics. Part I: Model description and sensitivity experiments. J. Atmos. Sci., 48, 1160–1189, doi: 10.1175/1520-0469(1991)048<1160:TSOACC>2.0.CO;2.

    Google Scholar 

  • Li, L., Y. Yin, X. S. Gu, et al., 2014: Observational study of cloud condensation nuclei properties at various altitudes of Huangshan mountains. Chinese J. Atmos. Sci., 38, 410–420, doi: 10.3878/j.issn.1006-9895.2013.13149. (in Chinese)

    Google Scholar 

  • Li, J. X., Y. Yin, G. Ren, et al., 2015: Observational study of the spatial–temporal distribution of cloud condensation nuclei in Shanxi Province, China. China Environ. Sci., 35, 2261–2271, doi: 10.3969/j.issn.1000-6923.2015.08.003. (in Chinese)

    Google Scholar 

  • Lim, K.-S. S., and S.-Y. Hong, 2010: Development of an effective double-moment cloud microphysics scheme with prognostic cloud condensation nuclei (CCN) for weather and climate models. Mon. Wea. Rev., 138, 1587–1612, doi: 10.1175/2009MWR2968.1.

    Article  Google Scholar 

  • Lin, Y.-L., R. D. Farley, and H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model. J. Climate Appl. Meteor., 22, 1065–1092, doi: 10.1175/1520-0450(1983)022<1065:BPOTSF>2.0.CO;2.

    Article  Google Scholar 

  • Liu, P. F., C. S. Zhao, T. Göbel, et al., 2011: Hygroscopic properties of aerosol particles at high relative humidity and their diurnal variations in the North China Plain. Atmos. Chem. Phys., 11, 3479–3494, doi: 10.5194/acp-11-3479-2011.

    Article  Google Scholar 

  • Lu, G. X., and X. L. Guo, 2012: Distribution and origin of aerosol and its transform relationship with CCN derived from the spring multi-aircraft measurements of Beijing cloud experiment (BCE). Chinese Sci. Bull., 57, 2460–2469, doi: 10.1007/s11434-012-5136-9.

    Article  Google Scholar 

  • Ma, N., C. S. Zhao, T. Müller, et al., 2012: A new method to determine the mixing state of light absorbing carbonaceous using the measured aerosol optical properties and number size distributions. Atmos. Chem. Phys., 12, 2381–2397, doi: 10.5194/acp-12-2381-2012.

    Article  Google Scholar 

  • Meyers, M. P., R. L. Walko, J. Y. Harrington, et al., 1997: New RAMS cloud microphysics parameterization. Part II: The two-moment scheme. Atmos. Res., 45, 3–39, doi: 10.1016/<1065:BPOTSF>S0169-8095(97)00018-5.

    Google Scholar 

  • Molthan, A. L., and B. A. Colle, 2012: Comparisons of single-and double-moment microphysics schemes in the simulation of a synoptic-scale snowfall event. Mon. Wea. Rev., 140, 2982–3002, doi: 10.1175/MWR-D-11-00292.1.

    Article  Google Scholar 

  • Morrison, H., and J. O. Pinto, 2005: Mesoscale modeling of springtime arctic mixed-phase stratiform clouds using a new two-moment bulk microphysics scheme. J. Atmos. Sci., 62, 3683–3704, doi: 10.1175/JAS3564.1.

    Article  Google Scholar 

  • Morrison, H., G. Thompson, and V. Tatarskii, 2009: Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: Comparison of oneand two-moment schemes. Mon. Wea. Rev., 137, 991–1007, doi: 10.1175/2008MWR2556.1.

    Article  Google Scholar 

  • Murakami, M., 1990: Numerical Modeling of dynamical and microphysical evolution of an isolated convective cloud: The 19 July 1981 CCOPE cloud. J. Metor. Soc. Japan, 68, 107–128, doi: 10.2151/jmsj1965.68.2_107.

    Article  Google Scholar 

  • Ovtchinnikov, M., and Y. L. Kogan, 2000: An investigation of ice production mechanisms in small cumuliform clouds using a 3D model with explicit microphysics. Part I: Model description. J. Atmos. Sci., 57, 2989–3003, doi: 10.1175/1520-0469(2000)057<2989:AIOIPM>2.0.CO;2.

    Google Scholar 

  • Pinsky, M. B., and A. P. Khain, 2002: Effects of in-cloud nucleation and turbulence on droplet spectrum formation in cumulus clouds. Quart. J. Roy. Meteor. Soc., 128, 501–533, doi: 10.1256/003590002321042072.

    Article  Google Scholar 

  • Ramanathan, V., P. J. Crutzen, J. T, Kiehl, et al., 2001: Aerosols, climate, and the hydrological cycle. Science, 294, 2119–2124, doi: 10.1126/science.1064034.

    Article  Google Scholar 

  • Reisin, T., Z. Levin, and S. Tzivion, 1996: Rain production in convective clouds as simulated in an axisymmetric model with detailed microphysics. Part I: Description of the model. J. Atmos. Sci., 53, 497–519, doi: 10.1175/1520-0469(1996)053<0497:RPICCA>2.0.CO;2.

    Google Scholar 

  • Reisner, J., R. M. Rasmussen, and R. T. Bruintjes, 1998: Explicit forecasting of supercooled liquid water in winter storms using the MM5 mesoscale model. Quart. J. Roy. Meteor. Soc., 124, 1071–1107, doi: 10.1002/qj.49712454804.

    Article  Google Scholar 

  • Rong, Y. M., and Y. Yin, 2010: The response of convective clouds to aerosol and relative humidity: A numerical study. Chinese J. Atmos. Sci., 34, 815–826, doi: 10.3878/j.issn.1006-9895.2010.04.13. (in Chinese)

    Google Scholar 

  • Seifert, A., and K. D. Beheng, 2001: A double-moment parameterization for simulating autoconversion, accretion and selfcollection. Atmos. Res., 59–60, 265–281, doi: 10.1016/S0169-8095(01)00126-0.

    Article  Google Scholar 

  • Seifert, A., and K. D. Beheng, 2006: A two-moment cloud microphysics parameterization for mixed-phase clouds. Part 1: Model description. Atmos. Phys., 92, 45–66, doi: 10.1007/s00703-005-0112-4.

    Google Scholar 

  • Shen, X. Y., H. X. Mei, W. G. Wang, et al., 2015: Numerical simulation of ice-phase processes using a double-moment microphysical scheme and a sensitivity test of ice nuclei concentra-tion. Chinese J. Atmos. Sci., 39, 83–99, doi: 10.3878/j.issn.1006-9895.1405.13310. (in Chinese)

    Google Scholar 

  • Shi, L. X., and Y. Duan, 2007: Observations of cloud condensation nuclei in North China. Acta Meteor. Sinica, 75, 644–652, doi: 10.3321/j.issn:0577-6619.2007.04.016.(in Chinese)

    Google Scholar 

  • Shi, R. G., Q. J. Liu, and Z. S. Ma, 2015: Numerical simulation of aerosol effects on cloud and precipitation using GRAPES model. Meteor. Mon., 41, 272–285, doi: 10.7519/j.issn.1000-0526.2015.03.002. (in Chinese)

    Google Scholar 

  • Soong, S.-T, 1974: Numerical simulation of warm rain development in an axisymmetric cloud model. J. Atmos. Sci., 31, 1262–1285, doi: 10.1175/1520-0469(1974)031<1262:NSOWRD>2.0.CO;2.

    Article  Google Scholar 

  • Stephens, G. L., 2005: Cloud feedbacks in the climate system: A critical review. J. Climate, 18, 237–273, doi: 10.1175/JCLI-3243.1.

    Article  Google Scholar 

  • Stevens, B., G. Feingold, W. R. Cotton, et al., 1996: Elements of the microphysical structure of numerically simulated nonprecipitating stratocumulus. J. Atmos. Sci., 53, 980–1006, doi: 10.1175/1520-0469(1996)053<0980:EOTMSO>2.0.CO;2.

    Article  Google Scholar 

  • Sun, J., X. F. Lou, Z. J. Hu, et al., 2008: Numerical experiment of the coupling of CAMS complex microphysical scheme and GRAPES model. J. Appl. Meteor. Sci., 19, 315–325, doi: 10.3969/j.issn.1001-7313.2008.03.007. (in Chinese)

    Google Scholar 

  • Sun, J., X. F. Lou, and Y. Q. Shi, 2011: The effects of different microphysical schemes on the simulation of a meiyu front heavy rainfall. Acta Meteor. Sinica, 69, 799–809. (in Chinese)

    Google Scholar 

  • Takahashi, T., 1975: Tropical showers in an axisymmetric cloud model. J. Atmos. Sci., 32, 1318–1330, doi: 10.1175/1520-0469(1975)032<1318:TSIAAC>2.0.CO;2.

    Article  Google Scholar 

  • Tao, Y., H. Y. Li, and Y. C. Hong, 2013: Numerical studies on cloud physics characteristic and influence of the graupel/hail category on cloud and precipitation during a heavy rainstorm over North China. Plateau Meteor., 32, 166–178, doi: 10.7522/j.issn.1000-0534.2012.00017. (in Chinese)

    Google Scholar 

  • Thompson, G., R. M. Rasmussen, and K. Manning, 2004: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part I: Description and sensitivity analysis. Mon. Wea. Rev., 132, 519–542, doi: 10.1175/1520-0493(2004)132<0519:EFOWPU>2.0.CO;2.

    Google Scholar 

  • Thompson, G., P. R. Field, R. M. Rasmussen, et al., 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Wea. Rev., 136, 5095–5115, doi: 10.1175/2008MWR2387.1.

    Google Scholar 

  • Van Weverberg, K., E. Goudenhoofdt, U. Blahak, et al., 2014: Comparison of one-moment and two-moment bulk microphysics for high-resolution climate simulations of intense precipitation. Atmos. Res., 147–148, 145–161, doi: 10.1016/j.atmosres.2014.05.012.

    Article  Google Scholar 

  • Wang, C., and J. S. Chang, 1993: A three-dimensional numerical model of cloud dynamics, microphysics, and chemistry. 1: Concepts and formulation. J. Geophys. Res., 98, 14827–14844, doi: 10.1029/92JD01393.

    Google Scholar 

  • Wang, H., J. F. Yin, and D. H. Wang, 2014: Comparative analysis of single-moment and double-moment microphysics schemes on a local heavy rainfall in South China. Plateau Meteor., 33, 1341–1351, doi: 10.7522/j.issn.1000-0534.2013.00119. (in Chinese)

    Google Scholar 

  • Wang, H., G. Y. Shi, X. Y. Zhang, et al., 2015: Mesoscale modelling study of the interactions between aerosols and PBL meteorology during a haze episode in China Jing–Jin–Ji and its near surrounding region—Part 2: Aerosols’ radiative feedback effects. Atmos. Chem. Phys., 15, 3277–3287, doi: 10.5194/acp-15-3277-2015.

    Article  Google Scholar 

  • Wu, X. J., Z. Y. Jin, L. P. Huang, et al., 2005: The software framework and application of GRAPES model. J. Appl. Meteor. Sci., 16, 539–546, doi: 10.3969/j.issn.1001-7313.2005.04.015. (in Chinese)

    Google Scholar 

  • Wu, H. Y., D. H. Chen, and G. Q. Xu, 2007: Sensitive experiments of various parameterization schemes in different physical processes on Guizhou precipitation. Meteor. Mon., 33, 23–28, doi: 10.3969/j.issn.1000-0526.2007.04.004. (in Chinese)

    Google Scholar 

  • Xiao, H., and Y. Yin, 2011: A numerical study of polluted aerosol effects on precipitation in Shanxi Province. Chinese J. Atmos. Sci., 35, 235–246, doi: 10.3878/j.issn.1006-9895.2011.02.04. (in Chinese)

    Google Scholar 

  • Xiao, H., Y. Yin, L. J. Jin, et al., 2015: Simulation of the effects of aerosol on mixed-phase orographic clouds using the WRF model with a detailed bin microphysics scheme. J. Geophys. Res., 120, 8345–8358, doi: 10.1002/2014JD022988.

    Google Scholar 

  • Xu, G. Q., X. D. Liang, H. Yu, et al., 2007: Precipitation simulation using different cloud–precipitation schemes for a landfall typhoon. Plateau Meteor., 26, 891–900. (in Chinese)

    Google Scholar 

  • Xu, G. Q., D. H. Chen, J. S. Xue, et al., 2008: The program structure designing and optimizing tests of GRAPES physics. Chinese Sci. Bull., 53, 3470–3476, doi: 10.1007/s11434-008-0418-y.

    Google Scholar 

  • Xu, G. Q., D. H. Chen, H. L. Zhang, et al., 2010: The impacts of time-level computation precision of physics in the GRAPES model on precipitation prediction. Chinese J. Atmos. Sci., 34, 875–881, doi: 10.3878/j.issn.1006-9895.2010.05.03. (in Chinese)

    Google Scholar 

  • Yang, X. S., J. L. Hu, D. H. Chen, et al., 2008: Verification of GRAPES unified global and regional numerical weather prediction model dynamic core. Chinese Sci. Bull., 53, 3458–3464, doi: 10.1007/s11434-008-0417-z.

    Google Scholar 

  • Yang, J. F., H. C. Lei, Z. X. Hu, et al., 2014: Particle size spectra and possible mechanisms of high ice concentration in nimbostratus over Hebei Province, China. Atmos. Res., 142, 79–90, doi: 10.1016/j.atmosres.2013.12.018.

    Article  Google Scholar 

  • Yin, Y., Z. Levin, T. Reisin, et al., 2000: Seeding convective clouds with hygroscopic flares: Numerical simulations using a cloud model with detailed microphysics. J. Appl. Meteor., 39, 1460–1472, doi: 10.1175/1520-0450(2000)039<1460:SCCWHF>2.0.CO;2.

    Article  Google Scholar 

  • Yin, Y., C. Chen, K. Chen, et al., 2010: An observational study of the microphysical properties of atmospheric aerosol at Mt Huang. Trans. Atmos. Sci., 33, 129–136, doi: 10.3969/j.issn.1674-7097.2010.02.001. (in Chinese)

    Google Scholar 

  • Yin, Y., Q. Chen, L. J. Jin, et al., 2012: The effects of deep convection on the concentration and size distribution of aerosol particles within the upper troposphere: A case study. J. Geophys. Res. Atmos., 117, D22202, doi: 10.1029/2012JD017827.

    Article  Google Scholar 

  • Yuan, L., Y. Yin, H. Xiao, et al., 2016: A closure study of aerosol optical properties at a regional background mountainous site in eastern China. Sci. Total Environ., 550, 950–960, doi: 10.1016/j.scitotenv.2016.01.205.

    Article  Google Scholar 

  • Zhao, C. S., X. X. Tie, G. Brasseur, et al., 2006: Aircraft measurements of cloud droplet spectral dispersion and implications for indirect aerosol radiative forcing. Geophys. Res. Lett., 33, L16809, doi: 10.1029/2006GL026653.

    Article  Google Scholar 

  • Zhao, Z., and H. C. Lei, 2008: A numerical simulation of cloud physical structure and microphysical processes associated with stratiform precipitation in Northwest China. Chinese J. Atmos. Sci., 32, 323–334, doi: 10.3878/j.issn.1006-9895.2008.02.11. (in Chinese)

    Google Scholar 

  • Zhao, Z., and H. C. Lei, 2014: Aircraft observations of liquid and ice in midlatitude mixed-phase clouds. Adv. Atmos. Sci., 31, 604–610, doi: 10.1007/s00376-013-3083-2.

    Article  Google Scholar 

  • Zhao, P. G., Y. Yin, and H. Xiao, 2015: The effects of aerosol on development of thunderstorm electrification: A numerical study. Atmos. Res., 153, 376–391, doi: 10.1016/j.atmosres.2014.09.011.

    Article  Google Scholar 

  • Zhou, C., X. Zhang, S. Gong, et al., 2016: Improving aerosol interaction with clouds and precipitation in a regional chemical weather modeling system. Atmos. Chem. Phys., 16, 145–160, doi: 10.5194/acp-16-145-2016.

    Article  Google Scholar 

  • Zhu, G. L., W. T. Lin, and Y. H. Cao, 2014: Numerical simulation of a rainstorm event over South China by using various cloud microphysics parameterization schemes in WRF model and its performance analysis. Chinese J. Atmos. Sci., 38, 513–523, doi: 10.3878/j.issn.1006-9895.2013.13202. (in Chinese)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Wang.

Additional information

Supported by the National Key Project (2016YFC0203306), National Natural Science Foundation of China (41590874), National (Key) 973 Program (2014CB441201), Chinese Academy of Meteorological Sciences’ Project (2017Z001), and Key Project of Air Pollution Cause and Control (DQGG0104).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, M., Wang, H., Zhang, X. et al. Applying the WRF Double-Moment Six-Class Microphysics Scheme in the GRAPES_Meso Model: A Case Study. J Meteorol Res 32, 246–264 (2018). https://doi.org/10.1007/s13351-018-7066-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13351-018-7066-1

Key words

Navigation